Show simple item record

dc.contributor.authorLai, Zhigang  Concept link
dc.contributor.authorChen, Changsheng  Concept link
dc.contributor.authorBeardsley, Robert C.  Concept link
dc.contributor.authorLin, Huichan  Concept link
dc.contributor.authorJi, Rubao  Concept link
dc.contributor.authorSasaki, J.  Concept link
dc.contributor.authorLin, Jian  Concept link
dc.date.accessioned2013-10-03T17:44:43Z
dc.date.available2013-10-03T17:44:43Z
dc.date.issued2013-08-14
dc.identifier.citationBiogeosciences 10 (2013): 5439-5449en_US
dc.identifier.urihttps://hdl.handle.net/1912/6244
dc.description© The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 10 (2013): 5439-5449, doi:10.5194/bg-10-5439-2013.en_US
dc.description.abstractThe 11 March 2011 tsunami triggered by the M9 and M7.9 earthquakes off the Tōhoku coast destroyed facilities at the Fukushima Dai-ichi Nuclear Power Plant (FNPP) leading to a significant long-term flow of the radionuclide 137Cs into coastal waters. A high-resolution, global-coastal nested ocean model was first constructed to simulate the 11 March tsunami and coastal inundation. Based on the model's success in reproducing the observed tsunami and coastal inundation, model experiments were then conducted with differing grid resolution to assess the initial spread of 137Cs over the eastern shelf of Japan. The 137Cs was tracked as a conservative tracer (without radioactive decay) in the three-dimensional model flow field over the period of 26 March–31 August 2011. The results clearly show that for the same 137Cs discharge, the model-predicted spreading of 137Cs was sensitive not only to model resolution but also the FNPP seawall structure. A coarse-resolution (∼2 km) model simulation led to an overestimation of lateral diffusion and thus faster dispersion of 137Cs from the coast to the deep ocean, while advective processes played a more significant role when the model resolution at and around the FNPP was refined to ∼5 m. By resolving the pathways from the leaking source to the southern and northern discharge canals, the high-resolution model better predicted the 137Cs spreading in the inner shelf where in situ measurements were made at 30 km off the coast. The overestimation of 137Cs concentration near the coast is thought to be due to the omission of sedimentation and biogeochemical processes as well as uncertainties in the amount of 137Cs leaking from the source in the model. As a result, a biogeochemical module should be included in the model for more realistic simulations of the fate and spreading of 137Cs in the ocean.en_US
dc.description.sponsorshipThis project was supported by the US National Science Foundation RAPID grants No. 1141697 and No. 1141785 and the Japan Science and Technology Agency J-RAPID program. The development of Global-FVCOM was supported by NSF grants ARC0712903, ARC0732084, and ARC0804029. Z. Lai’s contribution was supported by the Natural Science Foundation of China project 41206005, China MOST project 2012CB956004, and Sun Yat-Sen University 985 grant 42000-3281301. C. Chen serves as chief scientist for the International Center for Marine Studies, Shanghai Ocean University, and his contribution was supported by the Program of Science and Technology Commission of Shanghai Municipality (09320503700).en_US
dc.format.mimetypeapplication/pdf
dc.language.isoen_USen_US
dc.publisherCopernicus Publications on behalf of the European Geosciences Unionen_US
dc.relation.urihttps://doi.org/10.5194/bg-10-5439-2013
dc.rightsAttribution 3.0 Unported*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/*
dc.titleInitial spread of 137Cs from the Fukushima Dai-ichi Nuclear Power Plant over the Japan continental shelf : a study using a high-resolution, global-coastal nested ocean modelen_US
dc.typeArticleen_US
dc.identifier.doi10.5194/bg-10-5439-2013


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 3.0 Unported
Except where otherwise noted, this item's license is described as Attribution 3.0 Unported