Movement of deep-sea coral populations on climatic timescales

Date
2013-05-30Author
Thiagarajan, Nivedita
Concept link
Gerlach, Dana
Concept link
Roberts, Mark L.
Concept link
Burke, Andrea
Concept link
McNichol, Ann P.
Concept link
Jenkins, William J.
Concept link
Subhas, Adam V.
Concept link
Thresher, Ronald E.
Concept link
Adkins, Jess F.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/6167As published
https://doi.org/10.1002/palo.20023DOI
10.1002/palo.20023Keyword
Radiocarbon; Coral; GlacialAbstract
During the past 40,000 years, global climate has moved into and out of a full glacial period, with the deglaciation marked by several millennial-scale rapid climate change events. Here we investigate the ecological response of deep-sea coral communities to both glaciation and these rapid climate change events. We find that the deep-sea coral populations of Desmophyllum dianthus in both the North Atlantic and the Tasmanian seamounts expand at times of rapid climate change. However, during the more stable Last Glacial Maximum, the coral population globally retreats to a more restricted depth range. Holocene populations show regional patterns that provide some insight into what causes these dramatic changes in population structure. The most important factors are likely responses to climatically driven changes in productivity, [O2] and [CO32–].
Description
Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 28 (2013): 227–236, doi:10.1002/palo.20023.
Collections
Suggested Citation
Paleoceanography 28 (2013): 227–236Related items
Showing items related by title, author, creator and subject.
-
Coral and algae cover, coral richness, and coral diversity from coral reef sites sampled by small boats in the Palauan archipelago from 2011-2013
Cohen, Anne L; de Putron, Samantha J.; Karnauskas, Kristopher; McCorkle, Daniel C; Tarrant, Ann M. (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2019-12-30)Average coral and algae cover, coral richness, and coral diversity from 8 coral reef sites in Palau. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. ... -
The coral ecosphere: a unique coral reef habitat that fosters coral-microbial interactions
Weber, Laura; Gonzalez‐Díaz, Patricia; Armenteros, Maickel; Apprill, Amy (Wiley, 2019-05-21)Scleractinian corals are bathed in a sea of planktonic and particle‐associated microorganisms. The metabolic products of corals influence the growth and composition of microorganisms, but interactions between corals and ... -
Comment on "Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals" by R.G. Fairbanks et al. (Quaternary Science Reviews 24 (2005) 1781-1796), and "Extending the radiocarbon calibration beyond 26,000 years before present using fossil corals" by T.-C. Chiu et al. (Quaternary Science Reviews 24 (2005) 1797-1808).
Reimer, Paula J.; Baillie, Mike G. L.; Bard, Edouard; Beck, J. Warren; Blackwell, Paul G.; Buck, Caitlin E.; Burr, George S.; Edwards, R. Lawrence; Friedrich, Michael; Guilderson, Thomas P.; Hogg, Alan G.; Hughen, Konrad A.; Kromer, Bernd; McCormac, Gerry; Manning, Sturt; Reimer, Ron W.; Southon, John R.; Stuiver, Minze; van der Plicht, Johannes; Weyhenmeyer, Constanze E. (2006-02)A recently published radiocarbon calibration curve extending to 50,000 cal BP (Fairbanks et al. 2005) is purportedly superior to that generated by the IntCal working group beyond the end of the tree-ring data at 12,400 ...