• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Geology and Geophysics (G&G)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Geology and Geophysics (G&G)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Movement of deep-sea coral populations on climatic timescales

    Thumbnail
    View/Open
    Article (2.870Mb)
    Supplementary Information (121.7Kb)
    Figure S1 (302.2Kb)
    Figure S2 (304.2Kb)
    Table S1 (112.1Kb)
    Table S2 (289.1Kb)
    Table S3 (40.35Kb)
    Table S4 (133.5Kb)
    Date
    2013-05-30
    Author
    Thiagarajan, Nivedita  Concept link
    Gerlach, Dana  Concept link
    Roberts, Mark L.  Concept link
    Burke, Andrea  Concept link
    McNichol, Ann P.  Concept link
    Jenkins, William J.  Concept link
    Subhas, Adam V.  Concept link
    Thresher, Ronald E.  Concept link
    Adkins, Jess F.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/6167
    As published
    https://doi.org/10.1002/palo.20023
    DOI
    10.1002/palo.20023
    Keyword
     Radiocarbon; Coral; Glacial 
    Abstract
    During the past 40,000 years, global climate has moved into and out of a full glacial period, with the deglaciation marked by several millennial-scale rapid climate change events. Here we investigate the ecological response of deep-sea coral communities to both glaciation and these rapid climate change events. We find that the deep-sea coral populations of Desmophyllum dianthus in both the North Atlantic and the Tasmanian seamounts expand at times of rapid climate change. However, during the more stable Last Glacial Maximum, the coral population globally retreats to a more restricted depth range. Holocene populations show regional patterns that provide some insight into what causes these dramatic changes in population structure. The most important factors are likely responses to climatically driven changes in productivity, [O2] and [CO32–].
    Description
    Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 28 (2013): 227–236, doi:10.1002/palo.20023.
    Collections
    • Geology and Geophysics (G&G)
    Suggested Citation
    Paleoceanography 28 (2013): 227–236
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Coral and algae cover, coral richness, and coral diversity from coral reef sites sampled by small boats in the Palauan archipelago from 2011-2013 

      Cohen, Anne L; de Putron, Samantha J.; Karnauskas, Kristopher; McCorkle, Daniel C; Tarrant, Ann M. (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2019-12-30)
      Average coral and algae cover, coral richness, and coral diversity from 8 coral reef sites in Palau. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. ...
    • Thumbnail

      The coral ecosphere: a unique coral reef habitat that fosters coral-microbial interactions 

      Weber, Laura; Gonzalez‐Díaz, Patricia; Armenteros, Maickel; Apprill, Amy (Wiley, 2019-05-21)
      Scleractinian corals are bathed in a sea of planktonic and particle‐associated microorganisms. The metabolic products of corals influence the growth and composition of microorganisms, but interactions between corals and ...
    • Thumbnail

      Coral biomineralization, climate proxies and the sensitivity of coral reefs to CO2-driven climate change 

      DeCarlo, Thomas M. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2017-02)
      Scleractinian corals extract calcium (Ca2+) and carbonate (CO2−3) ions from seawater to construct their calcium carbonate (CaCO3) skeletons. Key to the coral biomineralization process is the active elevation of the CO2−3 ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo