Interannual variability of the Pacific Water boundary current in the Beaufort Sea
Citable URI
https://hdl.handle.net/1912/6158Location
Beaufort Sea152°W
DOI
10.1575/1912/6158Abstract
Between 2002 and 2011 a single mooring was maintained in the core of the Pacific Water boundary current in the Alaskan Beaufort Sea near 152° W. Using velocity and hydrographic data from six year-long deployments during this time period, we examine the interannual variability of the current. It is found that the volume, heat, and freshwater transport have all decreased drastically over the decade, by more than 80%. The most striking changes have occurred during the summer months. Using a combination of weather station data, atmospheric reanalysis fields, and concurrent shipboard and mooring data from the Chukchi Sea, we investigate the physical drivers
responsible for these changes. It is demonstrated that an increase in summertime easterly winds along the Beaufort slope is the primary reason for the drop in transport. The intensification of the local winds has in turn been driven by a strengthening of the summer Beaufort High in conjunction with a deepening of the summer Aleutian Low.
Since the fluxes of mass, heat, and freshwater through Bering Strait have increased over the same time period, this raises the question as to the fate of the Pacific water during recent years and its impacts. We present evidence that more heat has been fluxed directly into the interior basin from Barrow Canyon rather than entering the
Beaufort shelfbreak jet, and this is responsible for a significant portion of the increased ice melt in the Pacific sector of the Arctic Ocean.
Description
Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2013
Collections
Suggested Citation
Thesis: Brugler, Eric T., "Interannual variability of the Pacific Water boundary current in the Beaufort Sea", 2013-09, DOI:10.1575/1912/6158, https://hdl.handle.net/1912/6158Related items
Showing items related by title, author, creator and subject.
-
Understanding the ocean carbon and sulfur cycles in the context of a variable ocean : a study of anthropogenic carbon storage and dimethylsulfide production in the Atlantic Ocean
Levine, Naomi M. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2010-02)Anthropogenic activity is rapidly changing the global climate through the emission of carbon dioxide. Ocean carbon and sulfur cycles have the potential to impact global climate directly and through feedback loops. Numerical ... -
Trace element geochemistry of oceanic peridotites and silicate melt inclusions : implications for mantle melting and ocean ridge magmagenesis
Johnson, Kevin T. M. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1990-06-15)The mantle melting process is fundamental to basalt genesis and crustal accretion at mid-ocean ridges. It is believed that melts ascend more rapidly than the surrounding mantle, implying a process similar to fractional ... -
Near-inertial and thermal upper ocean response to atmospheric forcing in the North Atlantic Ocean
Silverthorne, Katherine E. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2010-06)Observational and modeling techniques are employed to investigate the thermal and inertial upper ocean response to wind and buoyancy forcing in the North Atlantic Ocean. First, the seasonal kinetic energy variability of ...