• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Interannual variability of the Pacific Water boundary current in the Beaufort Sea

    Thumbnail
    View/Open
    Brugler_Thesis (23.99Mb)
    Date
    2013-09
    Author
    Brugler, Eric T.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/6158
    Location
    Beaufort Sea
    152°W
    DOI
    10.1575/1912/6158
    Keyword
     Ocean circulation; Ocean-atmosphere interaction 
    Abstract
    Between 2002 and 2011 a single mooring was maintained in the core of the Pacific Water boundary current in the Alaskan Beaufort Sea near 152° W. Using velocity and hydrographic data from six year-long deployments during this time period, we examine the interannual variability of the current. It is found that the volume, heat, and freshwater transport have all decreased drastically over the decade, by more than 80%. The most striking changes have occurred during the summer months. Using a combination of weather station data, atmospheric reanalysis fields, and concurrent shipboard and mooring data from the Chukchi Sea, we investigate the physical drivers responsible for these changes. It is demonstrated that an increase in summertime easterly winds along the Beaufort slope is the primary reason for the drop in transport. The intensification of the local winds has in turn been driven by a strengthening of the summer Beaufort High in conjunction with a deepening of the summer Aleutian Low. Since the fluxes of mass, heat, and freshwater through Bering Strait have increased over the same time period, this raises the question as to the fate of the Pacific water during recent years and its impacts. We present evidence that more heat has been fluxed directly into the interior basin from Barrow Canyon rather than entering the Beaufort shelfbreak jet, and this is responsible for a significant portion of the increased ice melt in the Pacific sector of the Arctic Ocean.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2013
    Collections
    • Physical Oceanography (PO)
    • WHOI Theses
    Suggested Citation
    Thesis: Brugler, Eric T., "Interannual variability of the Pacific Water boundary current in the Beaufort Sea", 2013-09, DOI:10.1575/1912/6158, https://hdl.handle.net/1912/6158
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Understanding the ocean carbon and sulfur cycles in the context of a variable ocean : a study of anthropogenic carbon storage and dimethylsulfide production in the Atlantic Ocean 

      Levine, Naomi M. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2010-02)
      Anthropogenic activity is rapidly changing the global climate through the emission of carbon dioxide. Ocean carbon and sulfur cycles have the potential to impact global climate directly and through feedback loops. Numerical ...
    • Thumbnail

      Trace element geochemistry of oceanic peridotites and silicate melt inclusions : implications for mantle melting and ocean ridge magmagenesis 

      Johnson, Kevin T. M. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1990-06-15)
      The mantle melting process is fundamental to basalt genesis and crustal accretion at mid-ocean ridges. It is believed that melts ascend more rapidly than the surrounding mantle, implying a process similar to fractional ...
    • Thumbnail

      Near-inertial and thermal upper ocean response to atmospheric forcing in the North Atlantic Ocean 

      Silverthorne, Katherine E. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2010-06)
      Observational and modeling techniques are employed to investigate the thermal and inertial upper ocean response to wind and buoyancy forcing in the North Atlantic Ocean. First, the seasonal kinetic energy variability of ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo