Physical controls on hypoxia in Chesapeake Bay : a numerical modeling study
Citable URI
https://hdl.handle.net/1912/6123As published
https://doi.org/10.1002/jgrc.20138DOI
10.1002/jgrc.20138Keyword
Hypoxia; Stratification; Mixing; WindAbstract
A three-dimensional circulation model with a relatively simple dissolved oxygen model is used to examine the role that physical forcing has on controlling hypoxia and anoxia in Chesapeake Bay. The model assumes that the biological utilization of dissolved oxygen is constant in both time and space, isolating the role that physical forces play in modulating oxygen dynamics. Despite the simplicity of the model, it demonstrates skill in reproducing the observed variability of dissolved oxygen in the bay, highlighting the important role that variations in physical forcing have on the seasonal cycle of hypoxia. Model runs demonstrate significant changes in the annual integrated hypoxic volume as a function of river discharge, water temperature, and wind speed and direction. Variations in wind speed and direction had the greatest impact on the observed seasonal cycle of hypoxia and large impacts on the annually integrated hypoxic volume. The seasonal cycle of hypoxia was relatively insensitive to synoptic variability in river discharge, but integrated hypoxic volumes were sensitive to the overall magnitude of river discharge at annual time scales. Increases in river discharge were shown to increase hypoxic volumes, independent from the associated biological response to higher nutrient delivery. However, increases in hypoxic volume were limited at very high river discharge because increased advective fluxes limited the overall length of the hypoxic region. Changes in water temperature and its control on dissolved oxygen saturation were important to both the seasonal cycle of hypoxia and the overall magnitude of hypoxia in a given year.
Description
Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 118 (2013): 1239–1256, doi:10.1002/jgrc.20138.
Collections
Suggested Citation
Journal of Geophysical Research 118 (2013): 1239–1256Related items
Showing items related by title, author, creator and subject.
-
Estimating hypoxic volume in the Chesapeake Bay using two continuously sampled oxygen profiles
Bever, Aaron J.; Friedrichs, Marjorie A. M.; Friedrichs, Carl T.; Scully, Malcolm E. (John Wiley & Sons, 2018-09-12)Low levels of dissolved oxygen (DO) occur in many embayments throughout the world and have numerous detrimental effects on biota. Although measurement of in situ DO is straightforward with modern instrumentation, quantifying ... -
Combining observations and numerical model results to improve estimates of hypoxic volume within the Chesapeake Bay, USA
Lanerolle, Aaron J.; Friedrichs, Marjorie A. M.; Friedrichs, Carl T.; Scully, Malcolm E.; Lanerolle, Lyon W. J. (John Wiley & Sons, 2013-10-03)The overall size of the “dead zone” within the main stem of the Chesapeake Bay and its tidal tributaries is quantified by the hypoxic volume (HV), the volume of water with dissolved oxygen (DO) less than 2 mg/L. To improve ... -
Mixing of dissolved oxygen in Chesapeake Bay driven by the interaction between wind-driven circulation and estuarine bathymetry
Scully, Malcolm E. (John Wiley & Sons, 2016-08-08)Field observations collected in Chesapeake Bay demonstrate how wind-driven circulation interacts with estuarine bathymetry to control when and where the vertical mixing of dissolved oxygen occurs. In the across-Bay direction, ...