• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Physical controls on copepod aggregations in the Gulf of Maine

    Thumbnail
    View/Open
    Woods_thesis.pdf (19.00Mb)
    Date
    2013-06
    Author
    Woods, Nicholas W.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/6079
    Location
    Gulf of Maine
    DOI
    10.1575/1912/6079
    Keyword
     Ocean circulation; Zooplankton 
    Abstract
    This thesis explores the role that the circulation in the Gulf of Maine (GOM) plays in determining the distribution of dense aggregations of copepods. These aggregations are an important part of the marine ecosystem, especially for endangered North Atlantic right whales. Certain ocean processes may generate dense copepod aggregations, while others may destroy them; this thesis looks at how different characteristics of the GOM circulation fit into these two categories. The first part of the thesis investigates a hypothetical aggregation mechanism in which frontal circulation interacts with copepod behavior to generate a dense patch of copepods. The first two chapters of this thesis address this mechanism in the context of coastal river plumes and salinity fronts. One chapter describes the characteristics and variability of coastal freshwater and salinity fronts using a historical dataset and a realistic numerical model. The seasonal variability of freshwater is tied in part to seasonality in river discharge, while variability on shorter time scales in the frontal position is related to wind stress. Another chapter applies the hypothetical mechanism to idealized river plumes using a suite of numerical models. The structure of the plume and plume-relative circulation change the resulting copepod aggregation from what is expected from the hypothetical mechanism. The second part of the thesis discusses the GOM circulation and how it may eliminate copepod patches. The summertime mean surface circulation and eddy kinetic energy are computed from a Lagrangian drifter dataset and an adaptive technique that allows for higher spatial resolution while also keeping uncertainty low. Eddy diffusivity is also computed over different regions of the GOM in an attempt to quantify the spreading of a patch of copepods, and is found to be lower near the coast where right whales are often found feeding on copepod patches. In the next chapter, a numerical drifter dataset is used to understand how the results of the previous chapter depend upon the quantity of observations. It is found that the uncertainty in estimating eddy diffusivity is tightly coupled to the number of drifters in the calculation.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2013
    Collections
    • WHOI Theses
    • Physical Oceanography (PO)
    Suggested Citation
    Thesis: Woods, Nicholas W., "Physical controls on copepod aggregations in the Gulf of Maine", 2013-06, DOI:10.1575/1912/6079, https://hdl.handle.net/1912/6079
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      The geological record of oceanic crustal accretion and tectonism at slow-spreading ridges 

      Jaroslow, Gary E. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1996-12)
      The objective of this Thesis was to interpret the structural development of slowspreading ridge segments by: 1) delineating the nature, magnitude, and relative importance of primary tectonic and volcanic processes that ...
    • Thumbnail

      Interpretation of equatorial current meter data as internal waves 

      Blumenthal, Martin Benno (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1987-01)
      Garrett and Munk use linear dynamics to synthesize frequency-wavenumber energy spectra for internal waves (GM72, GM75, GM79). The GM internal wave models are horizontally isotropic, vertically symmetric, purely propagating, ...
    • Thumbnail

      Chlorophyll diagenesis in the water column and sediments of the Black Sea 

      King, Linda L. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1992-11)
      This thesis examines the degradation pathways of chlorophyll in the Black Sea water column and sediments. Measurements are made of total chlorophyll in sediment traps from two locations and depths in the water column, ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo