Tracking of time-evolving sound speed profiles in shallow water using an ensemble Kalman-particle filter
Citable URI
https://hdl.handle.net/1912/5946As published
https://doi.org/10.1121/1.4790354DOI
10.1121/1.4790354Keyword
Acoustic signal processing; Acoustic wave velocity; Hydrophones; Inverse problems; Kalman filters; Underwater acoustic propagationAbstract
This paper presents a tracking technique for performing sequential geoacoustic inversion monitoring range-independent environmental parameters in shallow water. The inverse problem is formulated in a state-space model with a state equation for the time-evolving sound speed profile (SSP) and a measurement equation that incorporates acoustic measurements via a hydrophone array. The particle filter (PF) is an ideal algorithm to perform tracking of environmental parameters for nonlinear systems with non-Gaussian probability densities. However, it has the problem of the mismatch between the proposal distribution and the a posterior probability distribution (PPD). The ensemble Kalman filter (EnKF) can obtain the PPD based on the Bayes theorem. A tracking algorithm improves the performance of the PF by employing the PPD of the EnKF as the proposal distribution of the PF. Tracking capabilities of this filter, the EnKF and the PF are compared with synthetic acoustic pressure data and experimental SSP data. Simulation results show the proposed method enables the continuous tracking of the range-independent SSP and outperforms the PF and the EnKF. Moreover, the complexity analysis is performed, and the computational complexity of the proposed method is greatly increased because of the combination of the PF and the EnKF.
Description
Author Posting. © Acoustical Society of America, 2013. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 133 (2013): 1377-1386, doi:10.1121/1.4790354.
Collections
Suggested Citation
Journal of the Acoustical Society of America 133 (2013): 1377-1386Related items
Showing items related by title, author, creator and subject.
-
Kalman filter estimation of underwater vehicle position and attitude using Doppler velocity aided inertial motion unit
Leader, Daniel Eugene (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1994-09)This Paper explores the use of an extended Kalman filter to provide real-time estimates of underwater vehicle position and attitude. The types of previously available sensors are detailed including strapdown accelerometers, ... -
Global barotropic variability of the ocean in response to atmospheric forcing based on multichannel regression and Kalman filter techniques
Chechelnitsky, Michael Y. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1996-05)TOPEX/POSEIDON altimetry data are employed in the analysis of the global ocean response to atmospheric forcing. We use two different approaches to test the hypothesis that the global sea surface height variability can ... -
Processing arctic eddy-flux data using a simple carbon-exchange model embedded in the ensemble Kalman filter
Rastetter, Edward B.; Williams, Mathew; Griffin, Kevin L.; Kwiatkowski, Bonnie L.; Tomasky, Gabrielle; Potosnak, Mark J.; Stoy, Paul C.; Shaver, Gaius R.; Stieglitz, Marc; Hobbie, John E.; Kling, George W. (Ecological Society of America, 2010-07)Continuous time-series estimates of net ecosystem carbon exchange (NEE) are routinely made using eddy covariance techniques. Identifying and compensating for errors in the NEE time series can be automated using a signal ...