• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Applied Ocean Physics and Engineering (AOP&E)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Applied Ocean Physics and Engineering (AOP&E)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Tracking of time-evolving sound speed profiles in shallow water using an ensemble Kalman-particle filter

    Thumbnail
    View/Open
    JAS001377.pdf (1.978Mb)
    Date
    2013-03
    Author
    Li, Jianlong  Concept link
    Zhou, Hui  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/5946
    As published
    https://doi.org/10.1121/1.4790354
    DOI
    10.1121/1.4790354
    Keyword
     Acoustic signal processing; Acoustic wave velocity; Hydrophones; Inverse problems; Kalman filters; Underwater acoustic propagation 
    Abstract
    This paper presents a tracking technique for performing sequential geoacoustic inversion monitoring range-independent environmental parameters in shallow water. The inverse problem is formulated in a state-space model with a state equation for the time-evolving sound speed profile (SSP) and a measurement equation that incorporates acoustic measurements via a hydrophone array. The particle filter (PF) is an ideal algorithm to perform tracking of environmental parameters for nonlinear systems with non-Gaussian probability densities. However, it has the problem of the mismatch between the proposal distribution and the a posterior probability distribution (PPD). The ensemble Kalman filter (EnKF) can obtain the PPD based on the Bayes theorem. A tracking algorithm improves the performance of the PF by employing the PPD of the EnKF as the proposal distribution of the PF. Tracking capabilities of this filter, the EnKF and the PF are compared with synthetic acoustic pressure data and experimental SSP data. Simulation results show the proposed method enables the continuous tracking of the range-independent SSP and outperforms the PF and the EnKF. Moreover, the complexity analysis is performed, and the computational complexity of the proposed method is greatly increased because of the combination of the PF and the EnKF.
    Description
    Author Posting. © Acoustical Society of America, 2013. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 133 (2013): 1377-1386, doi:10.1121/1.4790354.
    Collections
    • Applied Ocean Physics and Engineering (AOP&E)
    Suggested Citation
    Journal of the Acoustical Society of America 133 (2013): 1377-1386
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Kalman filter estimation of underwater vehicle position and attitude using Doppler velocity aided inertial motion unit 

      Leader, Daniel Eugene (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1994-09)
      This Paper explores the use of an extended Kalman filter to provide real-time estimates of underwater vehicle position and attitude. The types of previously available sensors are detailed including strapdown accelerometers, ...
    • Thumbnail

      Global barotropic variability of the ocean in response to atmospheric forcing based on multichannel regression and Kalman filter techniques 

      Chechelnitsky, Michael Y. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1996-05)
      TOPEX/POSEIDON altimetry data are employed in the analysis of the global ocean response to atmospheric forcing. We use two different approaches to test the hypothesis that the global sea surface height variability can ...
    • Thumbnail

      Processing arctic eddy-flux data using a simple carbon-exchange model embedded in the ensemble Kalman filter 

      Rastetter, Edward B.; Williams, Mathew; Griffin, Kevin L.; Kwiatkowski, Bonnie L.; Tomasky, Gabrielle; Potosnak, Mark J.; Stoy, Paul C.; Shaver, Gaius R.; Stieglitz, Marc; Hobbie, John E.; Kling, George W. (Ecological Society of America, 2010-07)
      Continuous time-series estimates of net ecosystem carbon exchange (NEE) are routinely made using eddy covariance techniques. Identifying and compensating for errors in the NEE time series can be automated using a signal ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo