A manganese-rich environment supports superoxide dismutase activity in a lyme disease pathogen, Borrelia burgdorferi

View/ Open
Date
2013-01-28Author
Aguirre, J. Dafhne
Concept link
Clark, Hillary M.
Concept link
McIlvin, Matthew R.
Concept link
Vazquez, Christine
Concept link
Palmere, Shaina L.
Concept link
Grab, Dennis J.
Concept link
Seshu, J.
Concept link
Hart, P. John
Concept link
Saito, Mak A.
Concept link
Culotta, Valeria C.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/5836As published
https://doi.org/10.1074/jbc.M112.433540Keyword
Lyme disease; Manganese; Iron; Superoxide dismutase; MitochondriaAbstract
The Lyme disease pathogen Borrelia burgdorferi represents a novel organism in which to study metalloprotein biology in that this spirochete has uniquely evolved with no requirement for iron. Not only is iron low, but we show here that B. burgdorferi has the capacity to accumulate remarkably high levels of manganese. This high manganese is necessary to activate the SodA superoxide dismutase (SOD) essential for virulence. Using a metalloproteomic approach, we demonstrate that a bulk of B. burgdorferi SodA directly associates with manganese and a smaller pool of inactive enzyme accumulates as apoprotein. Other metalloproteins may have similarly adapted to using manganese as co-factor including the BB0366 amino-peptidase. While B. burgdorferi SodA has evolved in a manganese-rich, iron-poor environment, the opposite is true for Mn-SODs of organisms such as E. coli and bakers’ yeast. These Mn-SODs still capture manganese in an iron-rich cell, and we tested whether the same is true for Borrelia SodA. When expressed in the iron-rich mitochondria of S. cerevisiae, B. burgdorferi SodA was inactive. Activity was only possible when cells accumulated extremely high levels of manganese that exceeded cellular iron. Moreover, there was no evidence for iron inactivation of the SOD. B. burgdorferi SodA shows strong overall homology with other members of the Mn-SOD family, but computer assisted modeling revealed some unusual features of the hydrogen bonding network near the enzyme’s active site. The unique properties of B. burgdorferi SodA may represent adaptation to expression in the manganese-rich and iron-poor environment of the spirochete.
Description
Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of American Society for Biochemistry and Molecular Biology for personal use, not for redistribution. The definitive version was published in Journal of Biological Chemistry 288 (2013): 8468-8478, doi:10.1074/jbc.M112.433540.
Collections
Suggested Citation
Preprint: Aguirre, J. Dafhne, Clark, Hillary M., McIlvin, Matthew R., Vazquez, Christine, Palmere, Shaina L., Grab, Dennis J., Seshu, J., Hart, P. John, Saito, Mak A., Culotta, Valeria C., "A manganese-rich environment supports superoxide dismutase activity in a lyme disease pathogen, Borrelia burgdorferi", 2013-01-28, https://doi.org/10.1074/jbc.M112.433540, https://hdl.handle.net/1912/5836Related items
Showing items related by title, author, creator and subject.
-
Constraints on superoxide mediated formation of manganese oxides
Learman, Deric R.; Voelker, Bettina M.; Madden, Andrew S.; Hansel, Colleen M. (Frontiers Media, 2013-09-03)Manganese (Mn) oxides are among the most reactive sorbents and oxidants within the environment, where they play a central role in the cycling of nutrients, metals, and carbon. Recent discoveries have identified superoxide ... -
RNAseq data used to identify Alphaflexivirus genomes in Stony Coral Tissue Loss Disease-affected, disease-exposed, and disease-unexposed coral colonies in the U.S. Virgin Islands (Multi-Species Coral Disease project)
Mydlarz, Laura; Correa, Adrienne M.S. (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2022-06-14)RNA-seq data from healthy, SCTLD-exposed, and SCTLD-infected coral samples taken from a transmission experiment carried out in the US Virgin Islands. For a complete list of measurements, refer to the full dataset ... -
Alphaflexivirus genomes in stony coral tissue loss disease-affected, disease-exposed, and disease-unexposed coral colonies in the U.S. Virgin Islands
Veglia, Alex J.; Beavers, Kelsey; Van Buren, Emily W.; Meiling, Sonora S.; Muller, Erinn; Smith, Tyler B.; Holstein, Daniel M.; Apprill, Amy; Brandt, Marilyn; Mydlarz, Laura; Correa, Adrienne M.S. (American Society for Microbiology, 2022-02-17)Stony coral tissue loss disease (SCTLD) is decimating Caribbean corals. Here, through the metatranscriptomic assembly and annotation of two alphaflexivirus-like strains, we provide genomic evidence of filamentous viruses ...