• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Experiments and numerical simulations of the dynamics of an R.O.V. thruster during maneuvering

    Thumbnail
    View/Open
    Knowles_thesis.pdf (10.67Mb)
    Date
    1996-09
    Author
    Knowles, James H.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/5672
    DOI
    10.1575/1912/5672
    Keyword
     Remote submersibles; Hydrodynamics 
    Abstract
    Propeller dynamics have typically been ignored in controller design, lumped into the category of 'unmodeled dynamics.' This is acceptable for propellers operating at constant speed in relatively uniform flows. Operational parameters of small remotely operated vehicles and autonomous underwater vehicles require a great deal of transient operation of the propellers. This and the small mass of the vehicles make the dynamics of the propellers a significant factor in vehicle control. Expanding roles of these vehicles require improved control and therefore improved understanding of the dynamics of the thrusters during maneuvering. In this thesis, the dynamics of maneuvering thrusters were explored through numerical simulation and experiments. Vortex lattice propeller code developed for use with nonuniform inflow was adapted to incorporate varying propeller speed and inflow velocity. Test runs were made using a three bladed propeller. Experiments were preformed on a thruster from the ROV Jason using the water tunnel at the Massachusetts Institute of Technology. The thruster incorporated a ducted three bladed propeller. Runs were made using step changes in shaft velocity as well as sinusoidal perturbations on top of steady state velocities. Runs were also made incorporating fully reversing propeller operation. Experiments were done with and without the duct in place. The numerical simulation and experimental results showed that accelerating propeller angular velocity created higher thrust values than steady state propeller operation at the corresponding instantaneous shaft velocity. Decelerating angular velocities created lower thrust values. This is attributed to a lag in the local flow velocity due to the momentum of the fluid. For the case of the accelerating propeller, the angle of attack at the blade is higher, resulting in higher lift force and greater thrust. Errors in the numerical code at low advance coefficients prevented direct comparison of numerical code results to experimental results.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1996
    Collections
    • Applied Ocean Physics and Engineering (AOP&E)
    • WHOI Theses
    Suggested Citation
    Thesis: Knowles, James H., "Experiments and numerical simulations of the dynamics of an R.O.V. thruster during maneuvering", 1996-09, DOI:10.1575/1912/5672, https://hdl.handle.net/1912/5672
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Seasonal oscillations in a mid-latitude ocean with barriers to deep flow 

      Firing, Eric (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1978-08)
      A two-layer linear analytic model is used to study the response of the mid-latitude ocean to the seasonal variation of the windstress. The most important component of the response is a barotropic quasi-steady Sverdrup ...
    • Thumbnail

      Geoacoustic inversion by mode amplitude perturbation 

      Poole, Travis L. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2007-02)
      This thesis introduces an algorithm for inverting for the geoacoustic properties of the seafloor in shallow water. The input data required by the algorithm are estimates of the amplitudes of the normal modes excited by ...
    • Thumbnail

      Emulating the fast-start swimming performance of the chain pickerel (Esox niger) using a mechanical fish design 

      Watts, Matthew Nicholas (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2006-09)
      Mean maximum start-up accelerations and velocities achieved by the fast-start specialist, northern pike, are reported at 120 ms-2 and 4 ms-1, respectively (Harper and Blake, 1990). In this thesis, a simple mechanical system ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo