Linearity of fisheries acoustics, with addition theorems
Citable URI
https://hdl.handle.net/1912/5657As published
https://doi.org/10.1121/1.389583DOI
10.1121/1.389583Abstract
An experiment to verify the basic linearity of fisheries acoustics is described. Herring (Clupea harengus L.) was the subject fish. Acoustic measurements consisted of the echo energy from aggregations of encaged but otherwise free‐swimming fish, and the target strength functions of similar, anesthetized specimens. Periodic photographic observation of the encaged fish allowed characterization of their behavior through associated spatial and orientation distributions. The fish biology and hydrography were also measured. Computations of the echo energy from encaged aggregations, derived by exercising the linear theory with the target strength functions of anesthetized fish and gross behavioral characteristics of encaged fish, agreed well with observation. This success was obtained for each of four independent echo sounders operating at frequencies from 38 to 120 kHz and at power levels from 35 W to nearly 1 kW. In addition to demonstrating the basic linearity of fisheries acoustics, the experiment verified both conventional acoustic measurements on anesthetized fish, at least for averaging purposes, and the echo integration method. Two simple theorems summarizing the meaning of linearity for use with the echo integration method are stated.
Description
Author Posting. © Acoustical Society of America, 1983. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 73 (1983): 1932-1940, doi:10.1121/1.389583.
Collections
Suggested Citation
Journal of the Acoustical Society of America 73 (1983): 1932-1940Related items
Showing items related by title, author, creator and subject.
-
Deep seafloor arrivals in long range ocean acoustic propagation
Stephen, Ralph A.; Bolmer, S. Thompson; Udovydchenkov, Ilya A.; Worcester, Peter F.; Dzieciuch, Matthew A.; Andrew, Rex K.; Mercer, James A.; Colosi, John A.; Howe, Bruce M. (Acoustical Society of America, 2013-10)Ocean bottom seismometer observations at 5000 m depth during the long-range ocean acoustic propagation experiment in the North Pacific in 2004 show robust, coherent, late arrivals that are not readily explained by ocean ... -
Sonar-induced pressure fields in a post-mortem common dolphin
Foote, Kenneth G.; Hastings, Mardi C.; Ketten, Darlene R.; Lin, Ying-Tsong; Reidenberg, Joy S.; Rye, Kent (Acoustical Society of America, 2012-02)Potential physical effects of sonar transmissions on marine mammals were investigated by measuring pressure fields induced in a 119-kg, 211-cm-long, young adult male common dolphin (Delphinus delphis) cadaver. The specimen ... -
Observationally constrained modeling of sound in curved ocean internal waves: Examination of deep ducting and surface ducting at short range
Duda, Timothy F.; Lin, Ying-Tsong; Reeder, D. Benjamin (Acoustical Society of America, 2011-09)A study of 400 Hz sound focusing and ducting effects in a packet of curved nonlinear internal waves in shallow water is presented. Sound propagation roughly along the crests of the waves is simulated with a three-dimensional ...