• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Optimal mode localization in disordered, periodic structures

    Thumbnail
    View/Open
    Rajagopal_thesis.pdf (28.06Mb)
    Date
    1995-02
    Author
    Rajagopal, Gopalkrishna  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/5632
    DOI
    10.1575/1912/5632
    Keyword
     Oscillations; Random vibration 
    Abstract
    Periodic structures which are slightly disordered undergo dramatic changes in mode shapes such that the responses go from being spatially extended to spatially localized. This phenomenon called mode localization, offers an excellent option for passive vibration isolation. In the first part of the thesis, we provide analytical prediction of modes exhibiting moderate localization using a newly developed Jordan Block Perturbation Method. We estimate and compare convergence zones of our newly developed method with perturbation techniques used to describe localized modes. In the second part of the thesis, we provide numerical evidence that complex branch points, which occur for complex disorder values in the mode-disorder relation, are responsible for modal sensitivity. We investigate the effects of the strength of the branch point and their location in the complex plane. In the third part of the thesis we perform an optimization study involving the selection of parameters which ensure a minimum level of localization of all modes. Optimal solutions were found to lie at maximum distances from the branch points, and the convergence basin of each optimum was demarcated by the branch point surface. The number of local optima were found to grow exponentially with the number of pendula. A statistical analysis showed that sampling of 10% provided an estimate that was within 2% of the global optimum, thereby reducing the computational effort for small to moderate systems of pendula. For larger systems of pendula, the problem of obtaining the global optimum in reasonable time still remains an open problem. In the fourth part of the thesis we propose an application for mode localization in vibration isolation. An oceanographic mooring with regularly spaced buoys is investigated for localization of inline elastic oscillations. Localization is found to be useful for confining the harmonics in deep water moorings of 1000 - 4000m.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Woods Hole Oceanographic Institution and the Massachusetts Institute of Technology February 1995
    Collections
    • Applied Ocean Physics and Engineering (AOP&E)
    • WHOI Theses
    Suggested Citation
    Thesis: Rajagopal, Gopalkrishna, "Optimal mode localization in disordered, periodic structures", 1995-02, DOI:10.1575/1912/5632, https://hdl.handle.net/1912/5632
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Seasonal oscillations in a mid-latitude ocean with barriers to deep flow 

      Firing, Eric (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1978-08)
      A two-layer linear analytic model is used to study the response of the mid-latitude ocean to the seasonal variation of the windstress. The most important component of the response is a barotropic quasi-steady Sverdrup ...
    • Thumbnail

      Geoacoustic inversion by mode amplitude perturbation 

      Poole, Travis L. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2007-02)
      This thesis introduces an algorithm for inverting for the geoacoustic properties of the seafloor in shallow water. The input data required by the algorithm are estimates of the amplitudes of the normal modes excited by ...
    • Thumbnail

      Emulating the fast-start swimming performance of the chain pickerel (Esox niger) using a mechanical fish design 

      Watts, Matthew Nicholas (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2006-09)
      Mean maximum start-up accelerations and velocities achieved by the fast-start specialist, northern pike, are reported at 120 ms-2 and 4 ms-1, respectively (Harper and Blake, 1990). In this thesis, a simple mechanical system ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo