• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Topographic preconditioning of open ocean deep convection

    Thumbnail
    View/Open
    Alverson_thesis.pdf (26.59Mb)
    Date
    1995-09
    Author
    Alverson, Keith D.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/5618
    Location
    Maud Rise
    Weddell Sea
    DOI
    10.1575/1912/5618
    Keyword
     Submarine topography; Convection 
    Abstract
    Evidence of enhanced oceanic convection over Maud Rise in the Weddell Sea indicates that bottom topography may play a role in selecting the location and scale of deep convecting oceanic chimneys below large scale atmospheric negative buoyancy forcing. Topographic preconditioning of open ocean deep convection is studied using an idealized, three-dimensional, primitive-equation model. A barotropic mean flow impinges on an isolated Gaussian-shaped seamount in a stratified domain with uniform negative surface buoyancy forcing. A region of topographically trapped flow forms over the topography. When this "Taylor cap" is tall enough to interact with the surface mixed-layer, the local isolation from mean horizontal advection forms a conduit into the deep water. The convective penetration depth within this local region is significantly enhanced relative to ambient levels away from the seamount and to similar runs performed without bottom topography. The parameter dependencies for these preconditioning processes are investigated. With uniform background stratification, the doming of isopycnals does not play a major role in the preconditioning process. However, when a surface intensified stratification is included, domed isopycnals associated with the Taylor cap circulation can also play a preconditioning role. In this case, the pycnocline is first ventilated over the seamount, leading to rapid convective deepening into the weakly stratified deep water. An analytical formula for one-dimensional, non-penetrative convection into an exponential stratification profile is derived and compares well with results from the numerical model. Previous modeling studies have often parameterized the mehanism by which the horizontal scale of oceanographic chimneys is set through the use of disk-shaped surface forcing functions. Unlike in such experiments, topographically preconditioned chimneys are not prone to breakup by the growth of baroclinic instabilities. Instead, convection is generally shut down by horizontal fluxes of heat due to the mean flow across the temperature gradients of the chimney walls. The presence of the mean flow, which is neccessary in order for the topographic preconditioning to work, causes instabilities to be advected downstream faster than they can grow locally. These results suggest that the role of baroclinic eddies in shutting down oceanographic convection is probably misrepresented in studies which parameterize the preconditioning mechanism, particularly if the preconditioning mechanism being parameterized is a topographic one.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1995
    Collections
    • Physical Oceanography (PO)
    • WHOI Theses
    Suggested Citation
    Thesis: Alverson, Keith D., "Topographic preconditioning of open ocean deep convection", 1995-09, DOI:10.1575/1912/5618, https://hdl.handle.net/1912/5618
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Development of an acoustic vorticity meter to measure shear in ocean-boundary layers 

      Thwaites, Fredrik T. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1995-09)
      This thesis describes the analysis and development of an acoustic vorticity meter to measure shear in ocean-boundary layers over smaller measurement volumes than previously possible. A nonintrusive measurement of vorticity ...
    • Thumbnail

      Spectral feature classification of oceanographic processes using an autonomous underwater vehicle 

      Zhang, Yanwu (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2000-06)
      The thesis develops and demonstrates methods of classifying ocean processes using an underwater moving platform such as an Autonomous Underwater Vehicle (AUV). The "mingled spectrum principle" is established which concisely ...
    • Thumbnail

      Tomographic observations of deep convection and the thermal evolution of the Greenland Sea Gyre, 1988-1989 

      Pawlowicz, Ryszard A. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1994-02)
      The thermal evolution of the Greenland Sea Gyre is investigated using both historical data and tomographic results from the 1988-89 Greenland Sea Tomography Experiment. Thermal evolution of the gyre center divides naturally ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo