• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    The steps in the development of an atmospheric vorticity meter

    Thumbnail
    View/Open
    Singleton_thesis.pdf (12.92Mb)
    Date
    1995-09
    Author
    Singleton, Thomas W.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/5612
    DOI
    10.1575/1912/5612
    Keyword
     Boundary layer; Turbulence 
    Abstract
    This thesis describes the steps necessary to develop an acoustic vorticity meter for the atmosphere. The analysis is based on Benthic Acoustic Stress Sensor (BASS) technology that is currently used for similar acoustic measurements in the ocean. Compared to sonic anemometer measurements, the BASS measurements of velocity are not only made in a different fluid but in a different way. Due to these differences, the physical make up of BASS needed to be altered, and the validity of the measurement technique had to be explored. The alterations to the BASS hardware occurred for several reasons. Because attenuation of sound is much higher in air than in water for the same frequencies, it was necessary to change the transducers. The generally faster and unidirectional mean flows that are present in the air encourage open measurement volumes which the BASS vorticity meters do not have. The difference in group speed of sound is different for water and air, and this forced a change to the timing and burst generation board of the BASS vorticity meter. The measurement technique used by the BASS instrumentation is validated by the error analysis in the text. Because the BASS instrumentation actually provides a time difference, the equation used by the BASS instrumentation to compute velocity was assumed throughout the error analysis. The error analysis shows that the combination of BASS measurement techniques with a temperature sensor will provide errors that are less than 2% of the velocity. The types of measurements that an atmospheric vorticity meter would provide to a researcher are described in the text to show the meter's potential. If deployed on a buoy, a vorticity meter could measure shearing of the wind close to the surface of the waves. If deployed at heights much greater than its path lengths, an atmospheric vorticity meter could provide three-dimensional vorticity measurements which would provide a unique measurement of a fundamental characteristic of turbulent flows.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1995
    Collections
    • Applied Ocean Physics and Engineering (AOP&E)
    • WHOI Theses
    Suggested Citation
    Thesis: Singleton, Thomas W., "The steps in the development of an atmospheric vorticity meter", 1995-09, DOI:10.1575/1912/5612, https://hdl.handle.net/1912/5612
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Seasonal oscillations in a mid-latitude ocean with barriers to deep flow 

      Firing, Eric (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1978-08)
      A two-layer linear analytic model is used to study the response of the mid-latitude ocean to the seasonal variation of the windstress. The most important component of the response is a barotropic quasi-steady Sverdrup ...
    • Thumbnail

      Geoacoustic inversion by mode amplitude perturbation 

      Poole, Travis L. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2007-02)
      This thesis introduces an algorithm for inverting for the geoacoustic properties of the seafloor in shallow water. The input data required by the algorithm are estimates of the amplitudes of the normal modes excited by ...
    • Thumbnail

      Emulating the fast-start swimming performance of the chain pickerel (Esox niger) using a mechanical fish design 

      Watts, Matthew Nicholas (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2006-09)
      Mean maximum start-up accelerations and velocities achieved by the fast-start specialist, northern pike, are reported at 120 ms-2 and 4 ms-1, respectively (Harper and Blake, 1990). In this thesis, a simple mechanical system ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo