• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Tracer transport timescales and the observed Atlantic-Pacific lag in the timing of the Last Termination

    Thumbnail
    View/Open
    2011PA002273.pdf (2.165Mb)
    Date
    2012-09-06
    Author
    Gebbie, Geoffrey A.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/5597
    As published
    https://doi.org/10.1029/2011PA002273
    DOI
    10.1029/2011PA002273
    Keyword
     Deglaciation; Foraminiferal data; Inverse methods; Numerical modeling; Oxygen-18; Tracers 
    Abstract
    The midpoint of the Last Termination occurred 4,000 years earlier in the deep Atlantic than the deep Pacific according to a pair of benthic foraminiferal δ18O records, seemingly implying an internal circulation shift because the lag is much longer than the deep radiocarbon age. Here a scenario where the lag is instead caused by regional surface boundary condition changes, delays due to oceanic transit timescales, and the interplay between temperature and seawater δ18O (δ18Ow) is quantified with a tracer transport model of the modern-day ocean circulation. Using an inverse method with individual Green functions for 2,806 surface sources, a time history of surface temperature and δ18Ow is reconstructed for the last 30,000 years that is consistent with the foraminiferal oxygen-isotope data, Mg/Ca-derived deep temperature, and glacial pore water records. Thus, in the case that the ocean circulation was relatively unchanged between glacial and modern times, the interbasin lag could be explained by the relatively late local glacial maximum around Antarctica where surface δ18Ow continues to rise even after the North Atlantic δ18Ow falls. The arrival of the signal of the Termination is delayed at the Pacific core site due to the destructive interference of the still-rising Antarctic signal and the falling North Atlantic signal. This scenario is only possible because the ocean is not a single conveyor belt where all waters at the Pacific core site previously passed the Atlantic core site, but instead the Pacific core site is bathed more prominently by waters with a direct Antarctic source.
    Description
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 27 (2012): PA3225, doi:10.1029/2011PA002273.
    Collections
    • Physical Oceanography (PO)
    Suggested Citation
    Paleoceanography 27 (2012): PA3225
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Time series measurements of transient tracers and tracer-derived transport in the Deep Western Boundary Current between the Labrador Sea and the subtropical Atlantic Ocean at Line W 

      Smith, John N.; Smethie, William M.; Yashayaev, Igor; Curry, Ruth G.; Azetsu-Scott, Kumiko (John Wiley & Sons, 2016-11-10)
      Time series measurements of the nuclear fuel reprocessing tracer 129I and the gas ventilation tracer CFC-11 were undertaken on the AR7W section in the Labrador Sea (1997–2014) and on Line W (2004–2014), located over the ...
    • Thumbnail

      Mixing in the North Atlantic Tracer Release Experiment : observations and numerical simulations of Lagrangian particles and passive tracer 

      Sundermeyer, Miles A. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1995-09)
      Mixing and stirring of passive tracer and Lagrangian particles in the open ocean was studied through comparison of observations from the North Atlantic Tracer Release Experiment, a numerical model, and existing theory. ...
    • Thumbnail

      Observations and modeling of a tidal inlet dye tracer plume 

      Feddersen, Falk; Olabarrieta, Maitane; Guza, R. T.; Winters, Dylan; Raubenheimer, Britt; Elgar, Steve (John Wiley & Sons, 2016-10-24)
      A 9 km long tracer plume was created by continuously releasing Rhodamine WT dye for 2.2 h during ebb tide within the southern edge of the main tidal channel at New River Inlet, NC on 7 May 2012, with highly obliquely ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo