• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Seismic scattering of low-grazing-angle acoustic waves incident on the seafloor

    Thumbnail
    View/Open
    Greaves_thesis.pdf (9.484Mb)
    Date
    1998-06
    Author
    Greaves, Robert J.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/5593
    Location
    Mid-Atlantic Ridge
    DOI
    10.1575/1912/5593
    Keyword
     Seismic waves; Underwater acoustics 
    Abstract
    The goal of this thesis is to develop a methodology to interpret sound scattered from the seafloor in terms of seafloor structure and subseafloor geological properties. Specifically, this work has been directed towards the interpretation of matched-filtered, beamformed monostatic acoustic reverberation data acquired on the west flank of the Mid-Atlantic Ridge when the seafloor is insonified by a band-limited, low-grazing-angle acoustic pulse. This research is based on the hypothesis that observed backscatter signals are produced by a combination of seafloor (interface) scattering and subseafloor (volume) scattering from structure having variations at scale lengths similar to the wavelength of the insonifying acoustic field. Analysis of monostatic reverberation data acquired during the Site A experiment (Run 1) of the Acoustic Reverberation Special Research Program 1993 Acoustics Cruise suggests that the scattered signals cannot be accounted for quantitatively in terms of large-scale slope, even though a strong correspondence between high intensity backscatter and seafloor ridges is observed. In order to investigate and quantify the actual sources of seafloor scattering, a numerical modeling study of seafloor models is undertaken using a finite-difference solution to the elastic wave equation. Geological data available at Site A and published reports describing geological properties of similar deep ocean crustal regions are used to develop a realistic seafloor model for the study area with realistic constraints on elastic parameters. Wavelength-scale heterogeneity in each model, in the form of seafloor roughness and subseafloor volume heterogeneity is defined using stochastic distributions with Gaussian autocorrelations. These distributions are quantified by their correlation lengths and standard deviation in amplitude. In order to incorporate all seafloor structure in a single parameterization of seafloor scattering, large-scale slope and wavelength-scale seafloor spatial parameters (rms height and correlation length), are included, along with the acoustic beam grazing-angle relative to a horizontal seafloor, in the definition of an 'effective grazing angle'. The Rayleigh roughness parameter, which depends on grazing angle of the insonification, is then redefined using the effective grazing angle and calculated for a variety of seafloor models. Scattering strengths are shown to vary systematically but nonlinearly with the 'effective Rayleigh roughness parameters' of horizontal rough seafloor models. This leads to an approximate interpretation scheme for backscatter intensity. In general, variation in backscattering is found to be dominated by the scattering from rough seafloor. If the seafloor is smooth or very low velocity (e.g., sediment), then scattering from volume heterogeneity becomes an important factor in the backscattered field. Both wavelength-scale seafloor roughness and volume heterogeneity are shown to be capable of producing the levels of variation in intensity observed in monostatic reverberation experiments. Variations in large-scale seafloor slope and subseafloor average velocity are shown to influence the backscatter response of seafloor models.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 1998
    Collections
    • WHOI Theses
    • Geology and Geophysics (G&G)
    Suggested Citation
    Thesis: Greaves, Robert J., "Seismic scattering of low-grazing-angle acoustic waves incident on the seafloor", 1998-06, DOI:10.1575/1912/5593, https://hdl.handle.net/1912/5593
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Seafloor borehole array seismic system (SEABASS) 

      Stephen, Ralph A.; Koelsch, Donald E.; Berteaux, Henri O.; Bocconcelli, Alessandro; Bolmer, S. Thompson; Cretin, J.; Etourmy, N.; Fabre, A.; Goldsborough, Robert G.; Gould, Matthew R.; Kery, Sean M.; Laurent, J.; Omnes, G.; Peal, Kenneth R.; Swift, Stephen A.; Turpening, R.; Zani, A. Cleo (Woods Hole Oceanographic Institution, 1993-01)
      The Seafloor Borehole Array Seismic System (SEABASS) has been developed to measure the pressure and three dimensional particle velocity of the VLF sound field (2-50HZ) below the seafloor in the deep ocean (water depths ...
    • Thumbnail

      The crustal structure of the Kane fracture zone from seismic refraction studies 

      Detrick, Robert S.; Purdy, G. Michael (Woods Hole Oceanographic Institution, 1980-12)
      A detailed seismic refraction experiment was carried out across the Kane Fracture Zone near 24°N, 44°W using explosive and air gun sound sources and eight ocean bottom hydrophone receivers. The shooting lines and receive ...
    • Thumbnail

      Seismicity and structure of the Orozco transform fault from ocean bottom seismic observations 

      Trehu, Anne M. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1982-02)
      In this thesis, seismic waves generated by sources ranging from 2.7 kg shots of TNT to magnitude 5 earthquakes are studied in order to determine the seismic activity and crustal structure of the Orozco transform fault. ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo