• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Tomographic observations of deep convection and the thermal evolution of the Greenland Sea Gyre, 1988-1989

    Thumbnail
    View/Open
    Pawlowicz_thesis.pdf (32.80Mb)
    Date
    1994-02
    Author
    Pawlowicz, Ryszard A.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/5573
    Location
    Greenland Sea Gyre
    DOI
    10.1575/1912/5573
    Keyword
     Ocean tomography; Convection 
    Abstract
    The thermal evolution of the Greenland Sea Gyre is investigated using both historical data and tomographic results from the 1988-89 Greenland Sea Tomography Experiment. Thermal evolution of the gyre center divides naturally into three periods: a preconditioning phase (November-January), during which surface salinity is increased by brine rejection from ice formation and by entrainment but in which the mixed-layer deepens only slowly to a depth of some 150-200m, a deep mixing phase (February-March) during which the surface mixed-layer deepens rapidly to approximately 1500m in the gyre center purely under the influence of local surface cooling, and a restratification phase during which the products of deep mixing are replaced by inflowing Arctic Intermediate Water (AIW). The onset of the deep mixing phase occurs after ice formation in the gyre center stops, resulting in an area of open water where large heat fluxes can occur. In surrounding regions, including the odden region to the south, ice is still being formed, and the mixed layer does not deepen significantly. To the north and west, closer to the steep topography of the continental shelf, the inverse results show significant variability due to advection, and large temperature and heat content fluctuations with a period of about 50 days are seen. The effects of advection are deduced from heat and salt budgets, and appear to be important only during the restratification phase for intermediate depths, and only during the summer for the surface waters. Comparison of the tomographic results with point measurements indicates that deep mixing occurs in a field of small plumes in which dense water sinks downwards, surrounded by larger regions of upwelling. The plume geometry is consistent with that predicted by numerical and laboratory models. Dynamical processes for bringing the AIW to the surface in order to form deep water are not needed in this scenario, rather the surface waters are modified until they match the density of the AIW after which surface cooling drives convection.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 1994
    Collections
    • Applied Ocean Physics and Engineering (AOP&E)
    • WHOI Theses
    Suggested Citation
    Thesis: Pawlowicz, Ryszard A., "Tomographic observations of deep convection and the thermal evolution of the Greenland Sea Gyre, 1988-1989", 1994-02, DOI:10.1575/1912/5573, https://hdl.handle.net/1912/5573
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Development of an acoustic vorticity meter to measure shear in ocean-boundary layers 

      Thwaites, Fredrik T. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1995-09)
      This thesis describes the analysis and development of an acoustic vorticity meter to measure shear in ocean-boundary layers over smaller measurement volumes than previously possible. A nonintrusive measurement of vorticity ...
    • Thumbnail

      Spectral feature classification of oceanographic processes using an autonomous underwater vehicle 

      Zhang, Yanwu (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2000-06)
      The thesis develops and demonstrates methods of classifying ocean processes using an underwater moving platform such as an Autonomous Underwater Vehicle (AUV). The "mingled spectrum principle" is established which concisely ...
    • Thumbnail

      Wintertime convection and frontal interleaving in the Southern Ocean 

      Toole, John M. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1980-03)
      The Southern Ocean as defined here is the body of water between the Antarctic Continent and the Antarctic Polar Front, (APF). This ocean is considered important in the global thermodynamic balance of the ocean-atmosphere ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo