• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Marine Chemistry and Geochemistry (MC&G)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Marine Chemistry and Geochemistry (MC&G)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Direct measurement of riverine particulate organic carbon age structure

    Thumbnail
    View/Open
    2012GL052883.pdf (720.4Kb)
    Date
    2012-10-03
    Author
    Rosenheim, Brad E.  Concept link
    Galy, Valier  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/5569
    As published
    https://doi.org/10.1029/2012GL052883
    DOI
    10.1029/2012GL052883
    Keyword
     Ganges; Himalaya; Mississippi; POC; Carbon cycle; Radiocarbon 
    Abstract
    Carbon cycling studies focusing on transport and transformation of terrigenous carbon sources toward marine sedimentary sinks necessitate separation of particulate organic carbon (OC) derived from many different sources and integrated by river systems. Much progress has been made on isolating and characterizing young biologically-formed OC that is still chemically intact, however quantification and characterization of old, refractory rock-bound OC has remained troublesome. Quantification of both endmembers of riverine OC is important to constrain exchanges linking biologic and geologic carbon cycles and regulating atmospheric CO2 and O2. Here, we constrain petrogenic OC proportions in suspended sediment from the headwaters of the Ganges River in Nepal through direct measurement using ramped pyrolysis radiocarbon analysis. The unique results apportion the biospheric and petrogenic fractions of bulk particulate OC and characterize biospheric OC residence time. Compared to the same treatment of POC from the lower Mississippi-Atchafalaya River system, contrast in age spectra of the Ganges tributary samples illustrates the difference between small mountainous river systems and large integrative ones in terms of the global carbon cycle.
    Description
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L19703, doi:10.1029/2012GL052883.
    Collections
    • Marine Chemistry and Geochemistry (MC&G)
    Suggested Citation
    Geophysical Research Letters 39 (2012): L19703
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Lake Michigan water chemistry data, including dissolved and particulate phosphorus, chlorophyll a, carbon dioxide, total dissolved inorganic carbon, and dissolved organic carbon. 

      Bootsma, Harvey; Liao, Qian (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2019-03-15)
      Lake Michigan water chemistry data, including dissolved and particulate phosphorus, chlorophyll a, carbon dioxide, total dissolved inorganic carbon, and dissolved organic carbon. For a complete list of measurements, ...
    • Thumbnail

      Lake Michigan water chemistry data, including dissolved and particulate phosphorus, chlorophyll a, carbon dioxide, total dissolved inorganic carbon, and dissolved organic carbon. 

      Bootsma, Harvey; Liao, Qian (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-04-26)
      Lake Michigan water chemistry data, including dissolved and particulate phosphorus, chlorophyll a, carbon dioxide, total dissolved inorganic carbon, and dissolved organic carbon. For a complete list of measurements, refer ...
    • Thumbnail

      Consequences of considering carbon–nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle 

      Sokolov, Andrei P.; Kicklighter, David W.; Melillo, Jerry M.; Felzer, Benjamin S.; Schlosser, C. Adam; Cronin, Timothy W. (American Meteorological Society, 2008-08-01)
      The impact of carbon–nitrogen dynamics in terrestrial ecosystems on the interaction between the carbon cycle and climate is studied using an earth system model of intermediate complexity, the MIT Integrated Global Systems ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo