Regional-scale phenology modeling based on meteorological records and remote sensing observations

View/ Open
Date
2012-09-14Author
Yang, Xi
Concept link
Mustard, John F.
Concept link
Tang, Jianwu
Concept link
Hong, Xu
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/5482As published
https://doi.org/10.1029/2012JG001977DOI
10.1029/2012JG001977Keyword
Budburst/senescence; Chilling; Growing season length; Phenology model; Photoperiod; Remote sensingAbstract
Changes of vegetation phenology in response to climate change in the temperate forests have been well documented recently and have important implications on the regional and global carbon and water cycles. Predicting the impact of changing phenology on terrestrial ecosystems requires an accurate phenology model. Although species-level phenology models have been tested using a small number of vegetation species, they are rarely examined at the regional level. In this study, we used remotely sensed phenology and meteorological data to parameterize the species-level phenology models. We used a remotely sensed vegetation index (Two-band Enhanced Vegetation Index, EVI2) derived from the Moderate Resolution Spectroradiometer (MODIS) 8-day reflectance product from 2000 to 2010 of New England, United States to calculate remotely sensed vegetation phenology (start/end of season, or SOS/EOS). The SOS/EOS and the daily mean air temperature data from weather stations were used to parameterize three budburst models and one senescence model. We compared the relative strengths of the models to predict vegetation phenology and selected the best model to reconstruct the “landscape phenology” in New England from year 1960 to 2010. Of the three budburst models tested, the spring warming model showed the best performance with an averaged Root Mean Square Deviation (RMSD) of 4.59 days. The Akaike Information Criterion supported the spring warming model in all the weather stations. For senescence modeling, the Delpierre model was better than a null model (the averaged phenology of each weather station, averaged model efficiency = 0.33) and has a RMSD of 8.05 days. A retrospective analysis using the spring warming model suggests a statistically significant advance of SOS in New England from 1960 to 2010 averaged as 0.143 days per year (p = 0.015). EOS calculated using the Delpierre model and growing season length showed no statistically significant advance or delay between 1960 and 2010 in this region. These results suggest the applicability of species-level phenology models at the regional level (and potentially terrestrial biosphere models) and the feasibility of using these models in reconstructing and predicting vegetation phenology.
Description
Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): G03029, doi:10.1029/2012JG001977.
Collections
Suggested Citation
Journal of Geophysical Research 117 (2012): G03029Related items
Showing items related by title, author, creator and subject.
-
Evaluating remotely sensed phenological metrics in a dynamic ecosystem model
Xu, Hong; Twine, Tracy E.; Yang, Xi (MDPI AG, 2014-05-26)Vegetation phenology plays an important role in regulating processes of terrestrial ecosystems. Dynamic ecosystem models (DEMs) require representation of phenology to simulate the exchange of matter and energy between the ... -
Seasonal patterns of canopy photosynthesis captured by remotely sensed sun-induced fluorescence and vegetation indexes in mid-to-high latitude forests : a cross-platform comparison
Lu, Xinchen; Cheng, Xiao; Li, Xianglan; Chen, Jiquan; Sun, Minmin; Ji, Ming; He, Hong; Wang, Siyu; Li, Sen; Tang, Jianwu (2018-06)Characterized by the noticeable seasonal patterns of photosynthesis, mid-to-high latitude forests are sensitive to climate change and crucial for understanding the global carbon cycle. To monitor the seasonal cycle of the ... -
Phytoplankton phenology indices in coral reef ecosystems : application to ocean-color observations in the Red Sea
Racault, Marie-Fanny; Raitsos, Dionysios E.; Berumen, Michael L.; Brewin, Robert J. W.; Platt, Trevor; Sathyendranath, Shubha; Hoteit, Ibrahim (Elsevier, 2015-02-18)Phytoplankton, at the base of the marine food web, represent a fundamental food source in coral reef ecosystems. The timing (phenology) and magnitude of the phytoplankton biomass are major determinants of trophic interactions. ...