• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Modeling convection in the Greenland Sea

    Thumbnail
    View/Open
    Bhushan_Thesis (31.87Mb)
    Date
    1998-09
    Author
    Bhushan, Vikas  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/5414
    Location
    Greenland Sea
    DOI
    10.1575/1912/5414
    Keyword
    Convection
    Abstract
    A detailed examination of the development of a deep convection event observed in the Greenland Sea in 1988-89 is carried out through a combination of modeling, scale estimates, and data analysis. We develop a prognostic one-dimensional mixed layer model which is coupled to a thermodynamic ice model. Our model contains a representation of the lowest order boundary layer dynamics and adjustable coupling strengths between the mixed layer, ice, and atmosphere. We find that the model evolution is not very sensitive to the strength of the coupling between the ice and the mixed layer sufficiently far away from the limits of zero and infinite coupling; we interpret this result in physical terms. Further, we derive an analytical expression which provides a scale estimate of the rate of salinification of the mixed layer during the ice-covered preconditioning period as a function of the rate of ice advection. We also derive an estimate for the rate of the mixed layer deepening which includes ice effects. Based on these scale estimates and model simulations, we confirm that brine rejection and advection of ice out of the convection area were essential ingredients during the preconditioning process. We also demonstrate that an observed rise in the air temperature starting in late December 1988 followed by a period of moderately cold ≈-10°C temperatures was key to the development of the observed convection event. Finally, we show that haline driven deep convection underneath an ice cover is possible, but unlikely to occur in the Greenland Sea. On the basis of these results, we develop a coherent picture of the evolution of the convection process which is more detailed than that presented in any previous work. We also comment on the likelihood that deep convection occurred in the Greenland Sea in the past two decades from an examination of historical data, and relate these findings to what is known about the inter-annual variability of convective activity in the Greenland Sea.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1998
    Collections
    • Physical Oceanography (PO)
    • WHOI Theses
    Suggested Citation
    Thesis: Bhushan, Vikas, "Modeling convection in the Greenland Sea", 1998-09, DOI:10.1575/1912/5414, https://hdl.handle.net/1912/5414
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Development of an acoustic vorticity meter to measure shear in ocean-boundary layers 

      Thwaites, Fredrik T. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1995-09)
      This thesis describes the analysis and development of an acoustic vorticity meter to measure shear in ocean-boundary layers over smaller measurement volumes than previously possible. A nonintrusive measurement of vorticity ...
    • Thumbnail

      Spectral feature classification of oceanographic processes using an autonomous underwater vehicle 

      Zhang, Yanwu (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2000-06)
      The thesis develops and demonstrates methods of classifying ocean processes using an underwater moving platform such as an Autonomous Underwater Vehicle (AUV). The "mingled spectrum principle" is established which concisely ...
    • Thumbnail

      Wintertime convection and frontal interleaving in the Southern Ocean 

      Toole, John M. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1980-03)
      The Southern Ocean as defined here is the body of water between the Antarctic Continent and the Antarctic Polar Front, (APF). This ocean is considered important in the global thermodynamic balance of the ocean-atmosphere ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo