Show simple item record

dc.contributor.authorTank, Suzanne E.
dc.contributor.authorFrey, Karen E.
dc.contributor.authorStriegl, Robert G.
dc.contributor.authorRaymond, Peter A.
dc.contributor.authorHolmes, Robert M.
dc.contributor.authorMcClelland, James W.
dc.contributor.authorPeterson, Bruce J.
dc.date.accessioned2012-10-01T16:58:53Z
dc.date.available2014-10-22T08:57:23Z
dc.date.issued2012-08-21
dc.identifier.citationGlobal Biogeochemical Cycles 26 (2012): GB0E02en_US
dc.identifier.urihttp://hdl.handle.net/1912/5407
dc.descriptionAuthor Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 26 (2012): GB0E02, doi:10.1029/2012GB004299.en_US
dc.description.abstractWhile much of the dissolved organic carbon (DOC) within rivers is destined for mineralization to CO2, a substantial fraction of riverine bicarbonate (HCO3−) flux represents a CO2 sink, as a result of weathering processes that sequester CO2 as HCO3−. We explored landscape-level controls on DOC and HCO3− flux in subcatchments of the boreal, with a specific focus on the effect of permafrost on riverine dissolved C flux. To do this, we undertook a multivariate analysis that partitioned the variance attributable to known, key regulators of dissolved C flux (runoff, lithology, and vegetation) prior to examining the effect of permafrost, using riverine biogeochemistry data from a suite of subcatchments drawn from the Mackenzie, Yukon, East, and West Siberian regions of the circumboreal. Across the diverse catchments that we study, controls on HCO3− flux were near-universal: runoff and an increased carbonate rock contribution to weathering (assessed as riverwater Ca:Na) increased HCO3− yields, while increasing permafrost extent was associated with decreases in HCO3−. In contrast, permafrost had contrasting and region-specific effects on DOC yield, even after the variation caused by other key drivers of its flux had been accounted for. We used ionic ratios and SO4 yields to calculate the potential range of CO2 sequestered via weathering across these boreal subcatchments, and show that decreasing permafrost extent is associated with increases in weathering-mediated CO2 fixation across broad spatial scales, an effect that could counterbalance some of the organic C mineralization that is predicted with declining permafrost.en_US
dc.description.sponsorshipFunding for this work was provided through NSF-OPP-0229302 and NSF-OPP-0732985. Additional support to S.E.T. was provided by an NSERC Postdoctoral Fellowship.en_US
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_USen_US
dc.publisherAmerican Geophysical Unionen_US
dc.relation.urihttp://dx.doi.org/10.1029/2012GB004299
dc.subjectArcticen_US
dc.subjectBicarbonateen_US
dc.subjectDissolved organic carbonen_US
dc.subjectPermafrosten_US
dc.titleLandscape-level controls on dissolved carbon flux from diverse catchments of the circumborealen_US
dc.typeArticleen_US
dc.description.embargo2013-02-21en_US
dc.identifier.doi10.1029/2012GB004299


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record