• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Collinear analysis of altimeter data in the Bering Sea

    Thumbnail
    View/Open
    Barber_thesis.pdf (12.06Mb)
    Date
    1989-09
    Author
    Barber, Deborah K.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/5392
    Location
    Bering Sea
    DOI
    10.1575/1912/5392
    Keyword
     Ocean circulation; Collineation 
    Abstract
    Eighteen months of sea surface height data from the GEOSAT altimeter along collinear subtracks were analyzed for information on the circulation pattern in the Bering Sea. Seventy subtracks from both ascending and descending orbits, with as many as 35 repeat cycles along each subtrack, were analyzed. Orbit errors were removed from the height data using a least-squares fit to a cubic polynomial, weighted by the inverse of the height variance. Addition of the weights decreased contamination of residual height profiles by the large geoid signal. Composite maps of variability along each track revealed patterns of increased variability in the regions of the documented Bering slope current (BSC) and the proposed western boundary current (WBC); however, no evidence was found of the expected bifurcation of the BSC near the Siberian coast. Past observations of tides in the Bering Sea were reviewed along with a local tide model to detect tidal contributions to the mesoscale sea surface height variability. The tidal analysis suggested that residual tides contributed primarily to the longer wavelengths which were removed in the collinear processing. Examination of the Schwiderski tidal correction proved it to be a sensible correction, reducing the height variance by approximately 60%. Finally, using a Gaussian model for the BSC velocity profile, synthetic residual heights were generated and fit to the actual data to produce estimates of absolute surface geostrophic velocity and transport. Comparisons of mean flow, height fluctuations and seasonal trends across the BSC, the WBC and Bering Strait support the hypothesis that the BSC turns north at Cape Navarin into the WBC which, in turn, is capable of supplying a major part of the transport through the Bering Strait.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1989
    Collections
    • Physical Oceanography (PO)
    • WHOI Theses
    Suggested Citation
    Thesis: Barber, Deborah K., "Collinear analysis of altimeter data in the Bering Sea", 1989-09, DOI:10.1575/1912/5392, https://hdl.handle.net/1912/5392
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Seasonal oscillations in a mid-latitude ocean with barriers to deep flow 

      Firing, Eric (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1978-08)
      A two-layer linear analytic model is used to study the response of the mid-latitude ocean to the seasonal variation of the windstress. The most important component of the response is a barotropic quasi-steady Sverdrup ...
    • Thumbnail

      Geoacoustic inversion by mode amplitude perturbation 

      Poole, Travis L. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2007-02)
      This thesis introduces an algorithm for inverting for the geoacoustic properties of the seafloor in shallow water. The input data required by the algorithm are estimates of the amplitudes of the normal modes excited by ...
    • Thumbnail

      Emulating the fast-start swimming performance of the chain pickerel (Esox niger) using a mechanical fish design 

      Watts, Matthew Nicholas (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2006-09)
      Mean maximum start-up accelerations and velocities achieved by the fast-start specialist, northern pike, are reported at 120 ms-2 and 4 ms-1, respectively (Harper and Blake, 1990). In this thesis, a simple mechanical system ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo