• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    High-speed dynamic soaring

    Thumbnail
    View/Open
    Dynamic soaring.pdf (1.945Mb)
    Date
    2012-04
    Author
    Richardson, Philip L.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/5306
    Abstract
    Dynamic soaring uses the gradient of wind velocity (wind shear) to gain energy for energy-neutral flight. Recently, pilots of radiocontrolled gliders have exploited the wind shear associated with fast winds blowing over mountain ridges to achieve very fast speeds, reaching a record of 487 mph in January 2012. A relatively simple two-layer model of dynamic soaring was developed to investigate factors that enable such fast speeds. The optimum period and diameter of a glider circling across a thin wind-shear layer predict maximum glider airspeed to be around 10 times the wind speed of the upper layer (assuming a maximum lift/drag of around 30). The optimum circling period can be small ~1.2 seconds in fast dynamic soaring at 500 mph, which is difficult to fly in practice and results in very large load factors ~100 times gravity. Adding ballast increases the optimum circling period toward flyable circling periods of 2-3 seconds. However, adding ballast increases stall speed and the difficulty of landing without damage. The compressibility of air and the decreasing optimum circling period with fast speeds suggest that record glider speeds will probably not increase as fast as they have during the last few years and will probably level out below a speed of 600 mph.
    Description
    Author Posting. © B2Streamlines.com, 2012. This article is posted here by permission of B2Streamlines.com for personal use, not for redistribution. The definitive version was published in R/C Soaring Digest 29, no. 4 (2012): 36-49.
    Collections
    • Physical Oceanography (PO)
    Suggested Citation
    R/C Soaring Digest 29, no. 4 (2012): 36-49
     
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo