Horizontal density structure and restratification of the Arctic Ocean surface layer

View/ Open
Date
2012-04Author
Timmermans, Mary-Louise
Concept link
Cole, Sylvia T.
Concept link
Toole, John M.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/5188As published
https://doi.org/10.1175/JPO-D-11-0125.1DOI
10.1175/JPO-D-11-0125.1Keyword
Arctic; Ocean dynamicsAbstract
Ice-tethered profiler (ITP) measurements from the Arctic Ocean’s Canada Basin indicate an ocean surface layer beneath sea ice with significant horizontal density structure on scales of hundreds of kilometers to the order 1 km submesoscale. The observed horizontal gradients in density are dynamically important in that they are associated with restratification of the surface ocean when dense water flows under light water. Such restratification is prevalent in wintertime and competes with convective mixing upon buoyancy forcing (e.g., ice growth and brine rejection) and shear-driven mixing when the ice moves relative to the ocean. Frontal structure and estimates of the balanced Richardson number point to the likelihood of dynamical restratification by isopycnal tilt and submesoscale baroclinic instability. Based on the evidence here, it is likely that submesoscale processes play an important role in setting surface-layer properties and lateral density variability in the Arctic Ocean.
Description
Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 659–668, doi:10.1175/JPO-D-11-0125.1.
Collections
Suggested Citation
Journal of Physical Oceanography 42 (2012): 659–668Related items
Showing items related by title, author, creator and subject.
-
Recent advances in Arctic ocean studies employing models from the Arctic Ocean Model Intercomparison Project
Proshutinsky, Andrey; Aksenov, Yevgeny; Kinney, Jaclyn Clement; Gerdes, Rudiger; Golubeva, Elena; Holland, David; Holloway, Greg; Jahn, Alexandra; Johnson, Mark; Popova, Ekaterina E.; Steele, Michael; Watanabe, Eiji (Oceanography Society, 2011-09)Observational data show that the Arctic Ocean has significantly and rapidly changed over the last few decades, which is unprecedented in the observational record. Air and water temperatures have increased, sea ice volume ... -
A land-to-ocean perspective on the magnitude, source and implication of DIC flux from major Arctic rivers to the Arctic Ocean
Tank, Suzanne E.; Raymond, Peter A.; Striegl, Robert G.; McClelland, James W.; Holmes, Robert M.; Fiske, Gregory J.; Peterson, Bruce J. (American Geophysical Union, 2012-12-14)A series of seasonally distributed measurements from the six largest Arctic rivers (the Ob', Yenisey, Lena, Kolyma, Yukon and Mackenzie) was used to examine the magnitude and significance of Arctic riverine DIC flux to ... -
The Arctic and subarctic Ocean flux of potential vorticity and the Arctic Ocean circulation
Yang, Jiayan (American Meteorological Society, 2005-12)According to observations, the Arctic Ocean circulation beneath a shallow thermocline can be schematized by cyclonic rim currents along shelves and over ridges. In each deep basin, the circulation is also believed to be ...