• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Modeling winter circulation under landfast ice : the interaction of winds with landfast ice

    Thumbnail
    View/Open
    2011JC007649.pdf (839.0Kb)
    Date
    2012-04-04
    Author
    Kasper, Jeremy L.  Concept link
    Weingartner, Thomas J.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/5177
    As published
    https://doi.org/10.1029/2011JC007649
    DOI
    10.1029/2011JC007649
    Keyword
     Coastal circulation; Ice edge upwelling; Ice ocean interaction; Landfast ice; Sea ice 
    Abstract
    Idealized models and a simple vertically averaged vorticity equation illustrate the effects of an upwelling favorable wind and a spatially variable landfast ice cover on the circulation beneath landfast ice. For the case of no along-shore variations in ice, upwelling favorable winds seaward of the ice edge result in vortex squashing beneath the landfast ice leading to (1) large decreases in coastal and ice edge sea levels, (2) cross-shore sea level slopes and weak (<~.05 m s−1) under-ice currents flowing upwind, (3) strong downwind ice edge jets, and (4) offshore transport in the under-ice and bottom boundary layers of the landfast ice zone. The upwind under-ice current accelerates quickly within 2–4 days and then slows as cross-shore transport gradually decreases the cross-shore sea level slope. Near the ice edge, bottom boundary layer convergence produces ice edge upwelling. Cross-ice edge exchanges occur in the surface and above the bottom boundary layer and reduce the under-ice shelf volume by 15% in 10 days. Under-ice along-shore pressure gradients established by along- and cross-shore variations in ice width and/or under-ice friction alter this basic circulation pattern. For a landfast ice zone of finite width and length, upwelling-favorable winds blowing seaward of and transverse to the ice boundaries induce downwind flow beneath the ice and generate vorticity waves that propagate along-shore in the Kelvin wave direction. Our results imply that landfast ice dynamics, not included explicitly herein, can effectively convert the long-wavelength forcing of the wind into shorter-scale ocean motions beneath the landfast ice.
    Description
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): C04006, doi:10.1029/2011JC007649.
    Collections
    • Physical Oceanography (PO)
    Suggested Citation
    Journal of Geophysical Research 117 (2012): C04006
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Offshore transport of dense water from the East Greenland Shelf 

      Harden, Benjamin E.; Pickart, Robert S.; Renfrew, Ian A. (American Meteorological Society, 2014-01)
      Data from a mooring deployed at the edge of the East Greenland shelf south of Denmark Strait from September 2007 to October 2008 are analyzed to investigate the processes by which dense water is transferred off the shelf. ...
    • Thumbnail

      Observations of water mass transformation and eddies in the Lofoten basin of the Nordic Seas 

      Richards, Clark G.; Straneo, Fiamma (American Meteorological Society, 2015-06)
      The Lofoten basin of the Nordic Seas is recognized as a crucial component of the meridional overturning circulation in the North Atlantic because of the large horizontal extent of Atlantic Water and winter surface buoyancy ...
    • Thumbnail

      Structure and forcing of observed exchanges across the Greenland–Scotland Ridge 

      Bringedal, Carina; Eldevik, Tor; Skagseth, Øystein; Spall, Michael A.; Østerhus, Svein (American Meteorological Society, 2018-11-19)
      The Atlantic meridional overturning circulation and associated poleward heat transport are balanced by northern heat loss to the atmosphere and corresponding water-mass transformation. The circulation of northward-flowing ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo