• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Biology
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Biology
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Chemistry, temperature, and faunal distributions at diffuse-flow hydrothermal vents : comparison of two geologically distinct ridge systems

    Thumbnail
    View/Open
    25-1_luther.pdf (1.303Mb)
    Date
    2012-03
    Author
    Luther, George W.  Concept link
    Gartman, Amy  Concept link
    Yucel, Mustafa  Concept link
    Madison, Andrew S.  Concept link
    Moore, Tommy S.  Concept link
    Nees, Heather A.  Concept link
    Nuzzio, Donald B.  Concept link
    Sen, Arunima  Concept link
    Lutz, Richard A.  Concept link
    Shank, Timothy M.  Concept link
    Fisher, Charles R.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/5168
    As published
    https://doi.org/10.5670/oceanog.2012.22
    DOI
    10.5670/oceanog.2012.22
    Abstract
    Diffuse-flow, low-temperature areas near hydrothermal vents support life via chemosynthesis: hydrogen sulfide (and other reduced chemical compounds) emanating from the subsurface is oxidized with bottom-water oxygen through bacterial mediation to fix carbon dioxide and produce biomass. This article reviews the in situ diffuse-flow chemistry (mainly H2S and O2) and temperature data collected in 2006 and 2009 along the Eastern Lau Spreading Center (ELSC), and from 2004 to 2008 at 9°N along the East Pacific Rise (9 N EPR), predominantly around macrofauna that contain endosymbionts at these two hydrothermal vent regions. More than 48,000 and 20,000 distinct chemical and temperature data points were collected with a multi-analyte electrochemical analyzer in the diffuse-flow waters at 9 N EPR and the ELSC, respectively. Despite their different geological settings and different macrofauna (two different species of snails and mussels at the ELSC versus two different species of tubeworms and mussels at 9 N EPR), there are similarities in the temperature and chemistry data, as well as in the distributions of organisms. The pattern of water chemistry preferred by the provannid snails (Alviniconcha spp., Ifremeria nautilei) and Bathymodiolus brevior at the ELSC is similar to the water chemistry pattern found for the siboglinid tubeworms (Tevnia jerichonana, Riftia pachyptila) and the Bathymodiolus thermophilus mussels at 9 N EPR. The eruptions at 9 N EPR in 2005 and 2006 resulted in increased H2S concentrations, increased H2S/T ratios, and an initial change in the dominant tubeworm species from Riftia pachyptila to Tevnia jerichonana after the eruption created new vent habitats. In 2005, two sites at 9 N EPR showed major increases in the H2S/T ratio from 2004, which suggested a probable eruption in this basalt-dominated system. At the ELSC, there was a decrease in the H2S/T ratio from northern to southern sites, which reflects the change in geological setting from basalt to andesite and the shallower water depths at the southern sites.
    Description
    Author Posting. © The Oceanography Society, 2012. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 25, no. 1 (2012): 234–245, doi:10.5670/oceanog.2012.22.
    Collections
    • Biology
    Suggested Citation
    Oceanography 25, no. 1 (2012): 234–245
     
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo