• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Applied Ocean Physics and Engineering (AOP&E)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Applied Ocean Physics and Engineering (AOP&E)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Biogeochemical processes at hydrothermal vents : microbes and minerals, bioenergetics, and carbon fluxes

    Thumbnail
    View/Open
    25-1_holden.pdf (988.3Kb)
    Date
    2012-03
    Author
    Holden, James F.  Concept link
    Breier, John A.  Concept link
    Rogers, Karyn L.  Concept link
    Schulte, Mitchell D.  Concept link
    Toner, Brandy M.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/5166
    As published
    https://doi.org/10.5670/oceanog.2012.18
    DOI
    10.5670/oceanog.2012.18
    Abstract
    Hydrothermal vents are among the most biologically active regions of the deep ocean. However, our understanding of the limits of life in this extreme environment, the extent of biogeochemical transformation that occurs in the crust and overlying ocean, and the impact of vent life on regional and global ocean chemistry is in its infancy. Recently, scientific studies have expanded our view of how vent microbes gain metabolic energy at vents through their use of dissolved chemicals and minerals contained in ocean basalts, seafloor sulfide deposits, and hydrothermal plumes and, in turn, how they catalyze chemical and mineral transformations. The scale of vent environments and the difficulties inherent in the study of life above, on, and below the deep seafloor have led to the development of geochemical and bioenergetic models. These models predict habitability and biological activity based on the chemical composition of hydrothermal fluids, seawater, and the surrounding rock, balanced by the physiological energy demand of cells. This modeling, coupled with field sampling for ground truth and discovery, has led to a better understanding of how hydrothermal vents affect the ocean and global geochemical cycles, and how they influence our views of life on the early Earth and the search for life beyond our own planet.
    Description
    Author Posting. © The Oceanography Society, 2012. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 25, no. 1 (2012): 196–208, doi:10.5670/oceanog.2012.18.
    Collections
    • Applied Ocean Physics and Engineering (AOP&E)
    Suggested Citation
    Oceanography 25, no. 1 (2012): 196–208
     
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo