• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    The centennial and millennial variability of the IndoPacific Warm Pool and the Indonesian Throughflow

    Thumbnail
    View/Open
    Gibbons_thesis.pdf (19.57Mb)
    Date
    2012-02
    Author
    Gibbons, Fern T.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/5136
    Location
    Indonesian Throughflow
    DOI
    10.1575/1912/5136
    Keyword
     Heat; Water temperature 
    Abstract
    As the only low-latitude connection between ocean basins, the Indonesian Throughflow allows the direct transmission of heat and salinity between the Pacific and Indian Oceans. The Mg/Ca and δ18O of calcite of Globigerinoides ruber (G. ruber) were used to estimate the sea surface temperature (SST) and δ18O of water, an indicator of hydrologic conditions, over the past 20,000 years. I also attempted to estimate thermocline structure using Pulleniatina obliquiloculata, but the Mg/Ca and δ18O of calcite data yield conflicting interpretations, indicating further work on this proxy is required. The G. ruber Mg/Ca results suggest that the SST of the outflow passages were influenced by high latitude Southern Hemisphere temperature. At approximately 10,000 years before present, there was a warming in the Makassar Strait. This local warming was coincident with the flooding of the Sunda Shelf, which opened a connection between the South China Sea and the Indonesian Throughflow. Regional δ18O of seawater reconstructions suggest that the mean position of the Intertropical Convergence Zone (ITCZ) was approximately the same as modern at the last glacial maximum and was displaced to the south during the Younger Dryas and Heinrich Stadial 1, suggesting the ITCZ responds to changes in the interhemispheric temperature gradient.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2012
    Collections
    • Geology and Geophysics (G&G)
    • WHOI Theses
    Suggested Citation
    Thesis: Gibbons, Fern T., "The centennial and millennial variability of the IndoPacific Warm Pool and the Indonesian Throughflow", 2012-02, DOI:10.1575/1912/5136, https://hdl.handle.net/1912/5136
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Biological-physical interactions on Georges Bank : plankton transport and population dynamics of the ocean quahog, Arctica islandica 

      Lewis, Craig V. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1997-06)
      Advective losses of bank water during winter because of strong wind forcing were hypothesized to be a significant factor limiting recruitment of Georges Bank cormnunities. This hypothesis was examined using biological-physical ...
    • Thumbnail

      A model of the temporal and spatial distribution of carbon monoxide in the mixed layer 

      Kettle, A. James (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1994-06)
      A field experiment demonstrated the presence of a diurnal cycle in the concentration of carbon monoxide ([CO]) in the upper ocean at the BATS site. A series of laboratory experiments and numerical simulations were carried ...
    • Thumbnail

      Circulation in upper layers of southern North Atlantic deduced with use of isentropic analysis 

      Montgomery, Raymond B. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1938-08)
      Except for the presence in most localities of a shallow homogeneous surface layer and of a relatively homogeneous and deeper bottom layer, the oceans of the temperate and tropical regions are stratified and vertically ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo