• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Wind, waves, and acoustic background levels at Station ALOHA

    Thumbnail
    View/Open
    2011JC007267.pdf (1.627Mb)
    Date
    2012-03-10
    Author
    Duennebier, Fred K.  Concept link
    Lukas, Roger  Concept link
    Nosal, Eva-Marie  Concept link
    Aucan, Jerome  Concept link
    Weller, Robert A.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/5121
    As published
    https://doi.org/10.1029/2011JC007267
    DOI
    10.1029/2011JC007267
    Keyword
     Air-sea interaction; Marine acoustics; Ocean observatories; Ocean waves; Wave spectra 
    Abstract
    Frequency spectra from deep-ocean near-bottom acoustic measurements obtained contemporaneously with wind, wave, and seismic data are described and used to determine the correlations among these data and to discuss possible causal relationships. Microseism energy appears to originate in four distinct regions relative to the hydrophone: wind waves above the sensors contribute microseism energy observed on the ocean floor; a fraction of this local wave energy propagates as seismic waves laterally, and provides a spatially integrated contribution to microseisms observed both in the ocean and on land; waves in storms generate microseism energy in deep water that travels as seismic waves to the sensor; and waves reflected from shorelines provide opposing waves that add to the microseism energy. Correlations of local wind speed with acoustic and seismic spectral time series suggest that the local Longuet-Higgins mechanism is visible in the acoustic spectrum from about 0.4 Hz to 80 Hz. Wind speed and acoustic levels at the hydrophone are poorly correlated below 0.4 Hz, implying that the microseism energy below 0.4 Hz is not typically generated by local winds. Correlation of ocean floor acoustic energy with seismic spectra from Oahu and with wave spectra near Oahu imply that wave reflections from Hawaiian coasts, wave interactions in the deep ocean near Hawaii, and storms far from Hawaii contribute energy to the seismic and acoustic spectra below 0.4 Hz. Wavefield directionality strongly influences the acoustic spectrum at frequencies below about 2 Hz, above which the acoustic levels imply near-isotropic surface wave directionality.
    Description
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): C03017, doi:10.1029/2011JC007267.
    Collections
    • Physical Oceanography (PO)
    Suggested Citation
    Journal of Geophysical Research 117 (2012): C03017
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Deep seafloor arrivals in long range ocean acoustic propagation 

      Stephen, Ralph A.; Bolmer, S. Thompson; Udovydchenkov, Ilya A.; Worcester, Peter F.; Dzieciuch, Matthew A.; Andrew, Rex K.; Mercer, James A.; Colosi, John A.; Howe, Bruce M. (Acoustical Society of America, 2013-10)
      Ocean bottom seismometer observations at 5000 m depth during the long-range ocean acoustic propagation experiment in the North Pacific in 2004 show robust, coherent, late arrivals that are not readily explained by ocean ...
    • Thumbnail

      Observationally constrained modeling of sound in curved ocean internal waves: Examination of deep ducting and surface ducting at short range 

      Duda, Timothy F.; Lin, Ying-Tsong; Reeder, D. Benjamin (Acoustical Society of America, 2011-09)
      A study of 400 Hz sound focusing and ducting effects in a packet of curved nonlinear internal waves in shallow water is presented. Sound propagation roughly along the crests of the waves is simulated with a three-dimensional ...
    • Thumbnail

      Low-frequency broadband sound source localization using an adaptive normal mode back-propagation approach in a shallow-water ocean 

      Lin, Ying-Tsong; Newhall, Arthur E.; Lynch, James F. (Acoustical Society of America, 2012-02)
      A variety of localization methods with normal mode theory have been established for localizing low frequency (below a few hundred Hz), broadband signals in a shallow water environment. Gauss-Markov inverse theory is employed ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo