The CCSM4 ocean component

View/ Open
Date
2012-03-01Author
Danabasoglu, Gokhan
Concept link
Bates, Susan C.
Concept link
Briegleb, Bruce P.
Concept link
Jayne, Steven R.
Concept link
Jochum, Markus
Concept link
Large, William G.
Concept link
Peacock, Synte
Concept link
Yeager, Stephen G.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/5120As published
https://doi.org/10.1175/JCLI-D-11-00091.1DOI
10.1175/JCLI-D-11-00091.1Abstract
The ocean component of the Community Climate System Model version 4 (CCSM4) is described, and its solutions from the twentieth-century (20C) simulations are documented in comparison with observations and those of CCSM3. The improvements to the ocean model physical processes include new parameterizations to represent previously missing physics and modifications of existing parameterizations to incorporate recent new developments. In comparison with CCSM3, the new solutions show some significant improvements that can be attributed to these model changes. These include a better equatorial current structure, a sharper thermocline, and elimination of the cold bias of the equatorial cold tongue all in the Pacific Ocean; reduced sea surface temperature (SST) and salinity biases along the North Atlantic Current path; and much smaller potential temperature and salinity biases in the near-surface Pacific Ocean. Other improvements include a global-mean SST that is more consistent with the present-day observations due to a different spinup procedure from that used in CCSM3. Despite these improvements, many of the biases present in CCSM3 still exist in CCSM4. A major concern continues to be the substantial heat content loss in the ocean during the preindustrial control simulation from which the 20C cases start. This heat loss largely reflects the top of the atmospheric model heat loss rate in the coupled system, and it essentially determines the abyssal ocean potential temperature biases in the 20C simulations. There is also a deep salty bias in all basins. As a result of this latter bias in the deep North Atlantic, the parameterized overflow waters cannot penetrate much deeper than in CCSM3.
Description
Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 25 (2012): 1361–1389, doi:10.1175/JCLI-D-11-00091.1.
Collections
Suggested Citation
Journal of Climate 25 (2012): 1361–1389Related items
Showing items related by title, author, creator and subject.
-
Adaptive error estimation in linearized ocean general circulation models
Chechelnitsky, Michael Y. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1999-06)Data assimilation methods, such as the Kalman filter, are routinely used in oceanography. The statistics of the model and measurement errors need to be specified a priori. In this study we address the problem of estimating ... -
The impact of abyssal mixing parameterizations in an ocean general circulation model
Jayne, Steven R. (American Meteorological Society, 2009-07)A parameterization of vertical diffusivity in ocean general circulation models has been implemented in the ocean model component of the Community Climate System Model (CCSM). The parameterization represents the dynamics ... -
Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean : results from Phase II of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2)
Najjar, Raymond G.; Jin, X.; Louanchi, F.; Aumont, Olivier; Caldeira, Ken; Doney, Scott C.; Dutay, J.-C.; Follows, Michael J.; Gruber, Nicolas; Joos, Fortunat; Lindsay, Keith; Maier-Reimer, Ernst; Matear, Richard J.; Matsumoto, K.; Monfray, Patrick; Mouchet, Anne; Orr, James C.; Plattner, Gian-Kasper; Sarmiento, Jorge L.; Schlitzer, Reiner; Slater, Richard D.; Weirig, Marie-France; Yamanaka, Yasuhiro; Yool, Andrew (American Geophysical Union, 2007-08-08)Results are presented of export production, dissolved organic matter (DOM) and dissolved oxygen simulated by 12 global ocean models participating in the second phase of the Ocean Carbon-cycle Model Intercomparison Project. ...