• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Thermohaline structure in the California Current System : observations and modeling of spice variance

    Thumbnail
    View/Open
    2011JC007589.pdf (8.102Mb)
    Date
    2012-02-03
    Author
    Todd, Robert E.  Concept link
    Rudnick, Daniel L.  Concept link
    Mazloff, Matthew R.  Concept link
    Cornuelle, Bruce D.  Concept link
    Davis, Russ E.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/5087
    As published
    https://doi.org/10.1029/2011JC007589
    DOI
    10.1029/2011JC007589
    Keyword
     California Current System; Adjoint model; Glider; Passive tracer; Spice; Thermohaline structure 
    Abstract
    Upper ocean thermohaline structure in the California Current System is investigated using sustained observations from autonomous underwater gliders and a numerical state estimate. Both observations and the state estimate show layers distinguished by the temperature and salinity variability along isopycnals (i.e., spice variance). Mesoscale and submesoscale spice variance is largest in the remnant mixed layer, decreases to a minimum below the pycnocline near 26.3 kg m−3, and then increases again near 26.6 kg m−3. Layers of high (low) meso- and submesoscale spice variance are found on isopycnals where large-scale spice gradients are large (small), consistent with stirring of large-scale gradients to produce smaller scale thermohaline structure. Passive tracer adjoint calculations in the state estimate are used to investigate possible mechanisms for the formation of the layers of spice variance. Layers of high spice variance are found to have distinct origins and to be associated with named water masses; high spice variance water in the remnant mixed layer has northerly origin and is identified as Pacific Subarctic water, while the water in the deeper high spice variance layer has southerly origin and is identified as Equatorial Pacific water. The layer of low spice variance near 26.3 kg m−3 lies between the named water masses and does not have a clear origin. Both effective horizontal diffusivity, κh, and effective diapycnal diffusivity, κv, are elevated relative to the diffusion coefficients set in the numerical simulation, but changes in κh and κv with depth are not sufficient to explain the observed layering of thermohaline structure.
    Description
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): C02008, doi:10.1029/2011JC007589.
    Collections
    • Physical Oceanography (PO)
    Suggested Citation
    Journal of Geophysical Research 117 (2012): C02008
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Eddy-resolving simulation of plankton ecosystem dynamics in the California Current System 

      Gruber, Nicolas; Frenzel, Hartmut; Doney, Scott C.; Marchesiello, Patrick; McWilliams, James C.; Moisan, John R.; Oram, John J.; Plattner, Gian-Kasper; Stolzenbach, Keith D. (2006-06-13)
      We study the dynamics of the planktonic ecosystem in the coastal upwelling zone within the California Current System using a three-dimensional, eddy-resolving circulation model coupled to an ecosystem/biogeochemistry ...
    • Thumbnail

      Multiple Opening and Closing Net Environmental Sampling System (MOCNESS) water filtering volumes from 2018 and 2019 taken in the Northern California Current waters. 

      Cowen, Robert K.; Sponaugle, Su; Sutherland, Kelly Rakow (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-02-26)
      Multiple Opening and Closing Net Environmental Sampling System (MOCNESS) water filtering volumes from 2018 and 2019 taken in the Northern California Current waters sampled aboard the R/V Sikuliaq, R/V Sally Ride and R/V ...
    • Thumbnail

      Iron-binding ligands in the Southern California Current System : mechanistic studies 

      Bundy, Randelle M.; Jiang, Mingshun; Carter, Melissa; Barbeau, Katherine A. (Frontiers Media, 2016-03-15)
      The distributions of dissolved iron and organic iron-binding ligands were examined in water column profiles and deckboard incubation experiments in the southern California Current System (sCCS) along a transition from ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo