Estimated communication range and energetic cost of bottlenose dolphin whistles in a tropical habitat

View/ Open
Date
2012-01Author
Jensen, Frants H.
Concept link
Beedholm, Kristian
Concept link
Wahlberg, Magnus
Concept link
Bejder, Lars
Concept link
Madsen, Peter T.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/5033As published
https://doi.org/10.1121/1.3662067DOI
10.1121/1.3662067Keyword
Acoustic arrays; Acoustic noise; Acoustic radiators; Acoustic variables measurement; Acoustic wave transmission; Biocommunications; Global Positioning System; Hydrophones; Underwater soundAbstract
Bottlenose dolphins (Tursiops sp.) depend on frequency-modulated whistles for many aspects of their social behavior, including group cohesion and recognition of familiar individuals. Vocalization amplitude and frequency influences communication range and may be shaped by many ecological and physiological factors including energetic costs. Here, a calibrated GPS-synchronized hydrophone array was used to record the whistles of bottlenose dolphins in a tropical shallow-water environment with high ambient noise levels. Acoustic localization techniques were used to estimate the source levels and energy content of individual whistles. Bottlenose dolphins produced whistles with mean source levels of 146.7±6.2 dB re. 1 μPa(RMS). These were lower than source levels estimated for a population inhabiting the quieter Moray Firth, indicating that dolphins do not necessarily compensate for the high noise levels found in noisy tropical habitats by increasing their source level. Combined with measured transmission loss and noise levels, these source levels provided estimated median communication ranges of 750 m and maximum communication ranges up to 5740 m. Whistles contained less than 17 mJ of acoustic energy, showing that the energetic cost of whistling is small compared to the high metabolic rate of these aquatic mammals, and unlikely to limit the vocal activity of toothed whales.
Description
Author Posting. © Acoustical Society of America, 2012. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 131 (2012): 582-592, doi:10.1121/1.3662067.
Collections
Suggested Citation
Journal of the Acoustical Society of America 131 (2012): 582-592Related items
Showing items related by title, author, creator and subject.
-
Deep seafloor arrivals in long range ocean acoustic propagation
Stephen, Ralph A.; Bolmer, S. Thompson; Udovydchenkov, Ilya A.; Worcester, Peter F.; Dzieciuch, Matthew A.; Andrew, Rex K.; Mercer, James A.; Colosi, John A.; Howe, Bruce M. (Acoustical Society of America, 2013-10)Ocean bottom seismometer observations at 5000 m depth during the long-range ocean acoustic propagation experiment in the North Pacific in 2004 show robust, coherent, late arrivals that are not readily explained by ocean ... -
Sonar-induced pressure fields in a post-mortem common dolphin
Foote, Kenneth G.; Hastings, Mardi C.; Ketten, Darlene R.; Lin, Ying-Tsong; Reidenberg, Joy S.; Rye, Kent (Acoustical Society of America, 2012-02)Potential physical effects of sonar transmissions on marine mammals were investigated by measuring pressure fields induced in a 119-kg, 211-cm-long, young adult male common dolphin (Delphinus delphis) cadaver. The specimen ... -
Observationally constrained modeling of sound in curved ocean internal waves: Examination of deep ducting and surface ducting at short range
Duda, Timothy F.; Lin, Ying-Tsong; Reeder, D. Benjamin (Acoustical Society of America, 2011-09)A study of 400 Hz sound focusing and ducting effects in a packet of curved nonlinear internal waves in shallow water is presented. Sound propagation roughly along the crests of the waves is simulated with a three-dimensional ...