A model of the Arctic Ocean carbon cycle

View/ Open
Date
2011-12-15Author
Manizza, Manfredi
Concept link
Follows, Michael J.
Concept link
Dutkiewicz, Stephanie
Concept link
Menemenlis, Dimitris
Concept link
McClelland, James W.
Concept link
Hill, C. N.
Concept link
Peterson, Bruce J.
Concept link
Key, Robert M.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/4990As published
https://doi.org/10.1029/2011JC006998DOI
10.1029/2011JC006998Keyword
Air-sea gas exchange; Biogeochemical cycles; Land-ocean coupling; Numerical modeling; Ocean carbon cycle; Polar oceansAbstract
A three dimensional model of Arctic Ocean circulation and mixing, with a horizontal resolution of 18 km, is overlain by a biogeochemical model resolving the physical, chemical and biological transport and transformations of phosphorus, alkalinity, oxygen and carbon, including the air-sea exchange of dissolved gases and the riverine delivery of dissolved organic carbon. The model qualitatively captures the observed regional and seasonal trends in surface ocean PO4, dissolved inorganic carbon, total alkalinity, and pCO2. Integrated annually, over the basin, the model suggests a net annual uptake of 59 Tg C a−1, within the range of published estimates based on the extrapolation of local observations (20–199 Tg C a−1). This flux is attributable to the cooling (increasing solubility) of waters moving into the basin, mainly from the subpolar North Atlantic. The air-sea flux is regulated seasonally and regionally by sea-ice cover, which modulates both air-sea gas transfer and the photosynthetic production of organic matter, and by the delivery of riverine dissolved organic carbon (RDOC), which drive the regional contrasts in pCO2 between Eurasian and North American coastal waters. Integrated over the basin, the delivery and remineralization of RDOC reduces the net oceanic CO2 uptake by ~10%.
Description
Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C12020, doi:10.1029/2011JC006998.
Collections
Suggested Citation
Journal of Geophysical Research 116 (2011): C12020Related items
Showing items related by title, author, creator and subject.
-
Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks : results from an atmosphere-ocean general circulation model
Thornton, Peter E.; Doney, Scott C.; Lindsay, Keith; Moore, J. Keith; Mahowald, Natalie M.; Randerson, James T.; Fung, Inez Y.; Lamarque, J.-F.; Feddema, J. J.; Lee, Y.-H. (Copernicus Publications on behalf of the European Geosciences Union, 2009-10-08)Inclusion of fundamental ecological interactions between carbon and nitrogen cycles in the land component of an atmosphere-ocean general circulation model (AOGCM) leads to decreased carbon uptake associated with CO2 ... -
Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean : results from Phase II of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2)
Najjar, Raymond G.; Jin, X.; Louanchi, F.; Aumont, Olivier; Caldeira, Ken; Doney, Scott C.; Dutay, J.-C.; Follows, Michael J.; Gruber, Nicolas; Joos, Fortunat; Lindsay, Keith; Maier-Reimer, Ernst; Matear, Richard J.; Matsumoto, K.; Monfray, Patrick; Mouchet, Anne; Orr, James C.; Plattner, Gian-Kasper; Sarmiento, Jorge L.; Schlitzer, Reiner; Slater, Richard D.; Weirig, Marie-France; Yamanaka, Yasuhiro; Yool, Andrew (American Geophysical Union, 2007-08-08)Results are presented of export production, dissolved organic matter (DOM) and dissolved oxygen simulated by 12 global ocean models participating in the second phase of the Ocean Carbon-cycle Model Intercomparison Project. ... -
Upper Ocean Box Model which solves for the time change of Dissolved Inorganic Carbon (DIC) in single upper ocean box
McKinley, Galen A. (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-05-10)The box model solves for the time change of Dissolved Inorganic Carbon (DIC) in single upper ocean box. The upper ocean box model is forced by observed atmospheric pCO2 and temperature. It calculates the pCO2 and air-sea ...