• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Marine Biological Laboratory
    • Ecosystems Center
    • View Item
    •   WHOAS Home
    • Marine Biological Laboratory
    • Ecosystems Center
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    A model of the Arctic Ocean carbon cycle

    Thumbnail
    View/Open
    2011JC006998.pdf (10.14Mb)
    Date
    2011-12-15
    Author
    Manizza, Manfredi  Concept link
    Follows, Michael J.  Concept link
    Dutkiewicz, Stephanie  Concept link
    Menemenlis, Dimitris  Concept link
    McClelland, James W.  Concept link
    Hill, C. N.  Concept link
    Peterson, Bruce J.  Concept link
    Key, Robert M.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/4990
    As published
    https://doi.org/10.1029/2011JC006998
    DOI
    10.1029/2011JC006998
    Keyword
     Air-sea gas exchange; Biogeochemical cycles; Land-ocean coupling; Numerical modeling; Ocean carbon cycle; Polar oceans 
    Abstract
    A three dimensional model of Arctic Ocean circulation and mixing, with a horizontal resolution of 18 km, is overlain by a biogeochemical model resolving the physical, chemical and biological transport and transformations of phosphorus, alkalinity, oxygen and carbon, including the air-sea exchange of dissolved gases and the riverine delivery of dissolved organic carbon. The model qualitatively captures the observed regional and seasonal trends in surface ocean PO4, dissolved inorganic carbon, total alkalinity, and pCO2. Integrated annually, over the basin, the model suggests a net annual uptake of 59 Tg C a−1, within the range of published estimates based on the extrapolation of local observations (20–199 Tg C a−1). This flux is attributable to the cooling (increasing solubility) of waters moving into the basin, mainly from the subpolar North Atlantic. The air-sea flux is regulated seasonally and regionally by sea-ice cover, which modulates both air-sea gas transfer and the photosynthetic production of organic matter, and by the delivery of riverine dissolved organic carbon (RDOC), which drive the regional contrasts in pCO2 between Eurasian and North American coastal waters. Integrated over the basin, the delivery and remineralization of RDOC reduces the net oceanic CO2 uptake by ~10%.
    Description
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C12020, doi:10.1029/2011JC006998.
    Collections
    • Ecosystems Center
    Suggested Citation
    Journal of Geophysical Research 116 (2011): C12020
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks : results from an atmosphere-ocean general circulation model 

      Thornton, Peter E.; Doney, Scott C.; Lindsay, Keith; Moore, J. Keith; Mahowald, Natalie M.; Randerson, James T.; Fung, Inez Y.; Lamarque, J.-F.; Feddema, J. J.; Lee, Y.-H. (Copernicus Publications on behalf of the European Geosciences Union, 2009-10-08)
      Inclusion of fundamental ecological interactions between carbon and nitrogen cycles in the land component of an atmosphere-ocean general circulation model (AOGCM) leads to decreased carbon uptake associated with CO2 ...
    • Thumbnail

      Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean : results from Phase II of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2) 

      Najjar, Raymond G.; Jin, X.; Louanchi, F.; Aumont, Olivier; Caldeira, Ken; Doney, Scott C.; Dutay, J.-C.; Follows, Michael J.; Gruber, Nicolas; Joos, Fortunat; Lindsay, Keith; Maier-Reimer, Ernst; Matear, Richard J.; Matsumoto, K.; Monfray, Patrick; Mouchet, Anne; Orr, James C.; Plattner, Gian-Kasper; Sarmiento, Jorge L.; Schlitzer, Reiner; Slater, Richard D.; Weirig, Marie-France; Yamanaka, Yasuhiro; Yool, Andrew (American Geophysical Union, 2007-08-08)
      Results are presented of export production, dissolved organic matter (DOM) and dissolved oxygen simulated by 12 global ocean models participating in the second phase of the Ocean Carbon-cycle Model Intercomparison Project. ...
    • Thumbnail

      Upper Ocean Box Model which solves for the time change of Dissolved Inorganic Carbon (DIC) in single upper ocean box 

      McKinley, Galen A. (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2021-05-10)
      The box model solves for the time change of Dissolved Inorganic Carbon (DIC) in single upper ocean box. The upper ocean box model is forced by observed atmospheric pCO2 and temperature. It calculates the pCO2 and air-sea ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo