Sea ice and its effect on CO2 flux between the atmosphere and the Southern Ocean interior
Citable URI
https://hdl.handle.net/1912/4949As published
https://doi.org/10.1029/2010JC006509DOI
10.1029/2010JC006509Keyword
CO2; Southern Ocean; Carbon cycle; Gas exchange; Sea iceAbstract
The advance and retreat of sea ice produces seasonal convection and stratification, dampens surface waves and creates a separation between the ocean and atmosphere. These are all phenomena that can affect the air-sea gas transfer velocity (k660), and therefore it is not straightforward to determine how sea ice cover modulates air-sea flux. In this study we use field estimates k660 to examine how sea ice affects the net gas flux between the ocean and atmosphere. An inventory of salinity, 3He, and CFC-11 in the mixed layer is used to infer k660 during the drift of Ice Station Weddell in 1992. The average of k660 is 0.11 m d−1 across nearly 100% ice cover. In comparison, the only prior field estimates of k660 are disproportionately larger, with average values of 2.4 m d−1 across 90% sea ice cover, and 3.2 m d−1 across approximately 70% sea ice cover. We use these values to formulate two scenarios for the modulation of k660 by the fraction of sea ice cover in a 1-D transport model for the Southern Ocean seasonal ice zone. Results show the net CO2 flux through sea ice cover represents 14–46% of the net annual air-sea flux, depending on the relationship between sea ice cover and k660. The model also indicates that as much as 68% of net annual CO2 flux in the sea ice zone occurs in the springtime marginal ice zone, which demonstrates the need for accurate parameterizations of gas flux and primary productivity under partially ice-covered conditions.
Description
Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C11019, doi:10.1029/2010JC006509.
Collections
Suggested Citation
Journal of Geophysical Research 116 (2011): C11019Related items
Showing items related by title, author, creator and subject.
-
Rates and mechanisms of turbulent dissipation and mixing in the Southern Ocean : results from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES)
Sheen, Katy L.; Brearley, J. Alexander; Naveira Garabato, Alberto C.; Smeed, David A.; Waterman, Stephanie N.; Ledwell, James R.; Meredith, Michael P.; St. Laurent, Louis C.; Thurnherr, Andreas M.; Toole, John M.; Watson, Andrew J. (John Wiley & Sons, 2013-06-04)The spatial distribution of turbulent dissipation rates and internal wavefield characteristics is analyzed across two contrasting regimes of the Antarctic Circumpolar Current (ACC), using microstructure and finestructure ... -
Data collected daily along the ship track in JGOFS format from ARSV Laurence M. Gould and RVIB Nathaniel B. Palmer cruises to the Southern Ocean from 2001-2003 as part of the Southern Ocean GLOBEC project.
Beardsley, Robert C; Costa, Daniel P.; Limeburner, Richard; Torres, Joseph J.; Wiebe, Peter H. (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2020-03-27)Data collected daily along the ship track in JGOFS format from ARSV Laurence M. Gould and RVIB Nathaniel B. Palmer cruises to the Southern Ocean from 2001-2003 as part of the Southern Ocean GLOBEC project For a complete ... -
Southern Ocean 2001 moorings: depth and pressure vs. time from ARSV Laurence M. Gould LMG0103, LMG0201A in the Southern Ocean from 2001-2002 (SOGLOBEC project)
Beardsley, Robert C; Limeburner, Richard (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2020-05-18)Southern Ocean 2001 moorings: depth and pressure vs. time from ARSV Laurence M. Gould LMG0103, LMG0201A in the Southern Ocean from 2001-2002. For a complete list of measurements, refer to the full dataset description in ...