Modeling surf zone tracer plumes : 2. Transport and dispersion
Citable URI
https://hdl.handle.net/1912/4948As published
https://doi.org/10.1029/2011JC007211DOI
10.1029/2011JC007211Keyword
Dispersion; Mixing; Surf zone; TracerAbstract
Five surf zone dye tracer releases from the HB06 experiment are simulated with a tracer advection diffusion model coupled to a Boussinesq surf zone model (funwaveC). Model tracer is transported and stirred by currents and eddies and diffused with a breaking wave eddy diffusivity, set equal to the breaking wave eddy viscosity, and a small (0.01 m2 s−1) background diffusivity. Observed and modeled alongshore parallel tracer plumes, transported by the wave driven alongshore current, have qualitatively similar cross-shore structures. Although the model skill for mean tracer concentration is variable (from negative to 0.73) depending upon release, cross-shore integrated tracer moments (normalized by the cross-shore tracer integral) have consistently high skills (≈0.9). Modeled and observed bulk surf zone cross-shore diffusivity estimates are also similar, with 0.72 squared correlation and skill of 0.4. Similar to the observations, the model bulk (absolute) cross-shore diffusivity is consistent with a mixing length parameterization based on low-frequency (0.001–0.03 Hz) eddies. The model absolute cross-shore dispersion is dominated by stirring from surf zone eddies and does not depend upon the presence of the breaking wave eddy diffusivity. Given only the bathymetry and incident wave field, the coupled Boussinesq-tracer model qualitatively reproduces the observed cross-shore absolute tracer dispersion, suggesting that the model can be used to study surf zone tracer dispersion mechanisms.
Description
Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C11028, doi:10.1029/2011JC007211.
Collections
Suggested Citation
Journal of Geophysical Research 116 (2011): C11028Related items
Showing items related by title, author, creator and subject.
-
Modeling surf zone tracer plumes : 1. Waves, mean currents, and low-frequency eddies
Feddersen, Falk; Clark, David B.; Guza, R. T. (American Geophysical Union, 2011-11-18)A model that accurately simulates surf zone waves, mean currents, and low-frequency eddies is required to diagnose the mechanisms of surf zone tracer transport and dispersion. In this paper, a wave-resolving time-dependent ... -
The formation of marine kin structure : effects of dispersal, larval cohesion, and variable reproductive success
D'Aloia, Cassidy C.; Neubert, Michael G. (2018-08)The spatial distribution of relatives has profound e ects on kin interactions, inbreeding, and inclusive tness. Yet, in the marine environment, the processes that generate patterns of kin structure remain understudied ... -
Employing plant functional groups to advance seed dispersal ecology and conservation
Aslan, Clare E.; Beckman, Noelle G.; Rogers, Haldre S.; Bronstein, Judith L.; Zurell, Damaris; Hartig, Florian; Shea, Katriona; Pejchar, Liba; Neubert, Michael G.; Poulsen, John R.; Hille Ris Lambers, Janneke; Miriti, Maria; Loiselle, Bette; Effiom, Edu; Zambrano, Jenny; Schupp, Eugene W.; Pufal, Gesine; Johnson, Jeremy; Bullock, James M.; Brodie, Jedediah; Bruna, Emilio; Cantrell, Robert Stephen; Decker, Robin; Fricke, Evan; Gurski, Katherine; Hastings, Alan; Kogan, Oleg; Razafindratsima, Onja; Sandor, Manette; Schreiber, Sebastian; Snell, Rebecca; Strickland, Christopher; Zhou, Ying (Oxford University Press, 2019-02-17)Seed dispersal enables plants to reach hospitable germination sites and escape natural enemies. Understanding when and how much seed dispersal matters to plant fitness is critical for understanding plant population and ...