• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Applied Ocean Physics and Engineering (AOP&E)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Applied Ocean Physics and Engineering (AOP&E)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Comparison of shear measurements and mixing predictions with a direct observation of diapycnal mixing in the Atlantic thermocline

    Thumbnail
    View/Open
    DudaJacobs1995.pdf (1.525Mb)
    Date
    1995-07-15
    Author
    Duda, Timothy F.  Concept link
    Jacobs, David C.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/4935
    As published
    https://doi.org/10.1029/95JC01023
    DOI
    10.1029/95JC01023
    Abstract
    Four sets of velocity and density profiles have been measured with an autonomous profiler during an upper ocean intentional‐tracer (SF6) diapycnal diffusivity measurement, the North Atlantic Tracer Release Experiment (NATRE). The tracer was injected near 310 m depth in the Canary Basin. Two profile sets were collected 6 months after tracer release, and two were collected 1 year after release, all within the horizontal boundaries of the SF6 patch. Shear and strain can be combined with turbulent kinetic energy dissipation and diffusivity measurements (published elsewhere) to test existing expressions for dissipation and diffusivity due to shear‐induced turbulence. These expressions arise from internal‐wave decay modeling. One expression of dissipation parameterized in terms of shear, based on stochastic nonlinear internal‐wave interaction, has fared well empirically; its extension to estimate diffusivity is evaluated. Shear variance of the first two data sets was about 1.6 times GM76, and 2.5 to 3.0 times GM76 in the later sets. The average parameterized mixing estimate computed using all of the temporally limited shear measurements overestimates annual mean NATRE diffusivity, 1.5 × 10−5 m2 s−1, by a factor of 1.2. A modified parameterization gives an underestimate. To first order, this supports the present understanding of open‐ocean diffusivity in terms of fine‐scale shear and internal‐wave decay, that is, the slow diapycnal mixing was not a consequence of unusually low shear. Adjustment of the shear‐induced mixing models to better fit the data is not warranted because of the lack of direct comparability between the various measurements, the expected natural variability of the shear, and sampling errors.
    Description
    Author Posting. © American Geophysical Union, 1995. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 100 no.C7 (1995): 13481–13498, doi:10.1029/95JC01023.
    Collections
    • Applied Ocean Physics and Engineering (AOP&E)
    Suggested Citation
    Journal of Geophysical Research 100 no.C7 (1995): 13481–13498
     
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo