Coupled acoustic mode propagation through continental-shelf internal solitary waves
Citable URI
https://hdl.handle.net/1912/4933As published
https://doi.org/10.1109/48.585945DOI
10.1109/48.585945Abstract
Three techniques are used to investigate mode coupling as acoustic energy passes through continental-shelf internal solitary waves (ISW's). Results from all techniques agree. The waves considered here are single downward undulations of a thermocline layer separating upper and lower well-mixed layers. Two techniques are numerical: parabolic equation (PE) solution and a sudden approximation joining range-invariant regions at sharp vertical interfaces. The third technique is an analytic derivation of ISW scale lengths separating adiabatic (at large scale) and coupled-mode propagation. Results show that energy is exchanged between modes as ISW's are traversed. The sharp interface solutions help explain this in terms of spatially confined coupling and modal phase interference. Three regimes are observed: 1) for short ISW's, coupling upon wave entrance is reversed upon exit, with no net coupling; 2) for ISW scales of 75-200 m, modal phase alteration averts the exit reversal, giving net coupling; transparent resonances yielding no net coupling are also observed in this regime; and 3) for long ISW's, adiabaticity is probable but not universal. Mode refraction analysis for nonparallel acoustic-ISW alignment suggests that these two-dimensional techniques remain valid for 0° (parallel) to 65° (oblique) incidence, with an accordant ISW stretching
Description
Author Posting. © IEEE, 1997. This article is posted here by permission of IEEE for personal use, not for redistribution. The definitive version was published in IEEE Journal of Oceanic Engineering 22 (1997): 256-269, doi:10.1109/48.585945.
Collections
Suggested Citation
IEEE Journal of Oceanic Engineering 22 (1997): 256-269Related items
Showing items related by title, author, creator and subject.
-
Deep seafloor arrivals in long range ocean acoustic propagation
Stephen, Ralph A.; Bolmer, S. Thompson; Udovydchenkov, Ilya A.; Worcester, Peter F.; Dzieciuch, Matthew A.; Andrew, Rex K.; Mercer, James A.; Colosi, John A.; Howe, Bruce M. (Acoustical Society of America, 2013-10)Ocean bottom seismometer observations at 5000 m depth during the long-range ocean acoustic propagation experiment in the North Pacific in 2004 show robust, coherent, late arrivals that are not readily explained by ocean ... -
Low-frequency broadband sound source localization using an adaptive normal mode back-propagation approach in a shallow-water ocean
Lin, Ying-Tsong; Newhall, Arthur E.; Lynch, James F. (Acoustical Society of America, 2012-02)A variety of localization methods with normal mode theory have been established for localizing low frequency (below a few hundred Hz), broadband signals in a shallow water environment. Gauss-Markov inverse theory is employed ... -
On whether azimuthal isotropy and alongshelf translational invariance are present in low-frequency acoustic propagation along the New Jersey shelfbreak
Lynch, James F.; Emerson, Chris; Abbot, Philip A.; Gawarkiewicz, Glen G.; Newhall, Arthur E.; Lin, Ying-Tsong; Duda, Timothy F. (Acoustical Society of America, 2012-02)To understand the issues associated with the presence (or lack) of azimuthal isotropy and horizontal (along isobath) invariance of low-frequency (center frequencies of 600 Hz and 900 Hz) acoustic propagation in a shelfbreak ...