A global relationship between the ocean water cycle and near-surface salinity
Citable URI
https://hdl.handle.net/1912/4894As published
https://doi.org/10.1029/2010JC006937DOI
10.1029/2010JC006937Abstract
Ocean evaporation (E) and precipitation (P) are the fundamental components of the global water cycle. They are also the freshwater flux forcing (i.e., E-P) for the open ocean salinity. The apparent connection between ocean salinity and the global water cycle leads to the proposition of using the oceans as a rain gauge. However, the exact relationship between E-P and salinity is governed by complex upper ocean dynamics, which may complicate the inference of the water cycle from salinity observations. To gain a better understanding of the ocean rain gauge concept, here we address a fundamental issue as to how E-P and salinity are related on the seasonal timescales. A global map that outlines the dominant process for the mixed-layer salinity (MLS) in different regions is thus derived, using a lower-order MLS dynamics that allows key balance terms (i.e., E-P, the Ekman and geostrophic advection, vertical entrainment, and horizontal diffusion) to be computed from satellite-derived data sets and a salinity climatology. Major E-P control on seasonal MLS variability is found in two regions: the tropical convergence zones featuring heavy rainfall and the western North Pacific and Atlantic under the influence of high evaporation. Within this regime, E-P accounts for 40–70% MLS variance with peak correlations occurring at 2–4 month lead time. Outside of the tropics, the MLS variations are governed predominantly by the Ekman advection, and then vertical entrainment. The study suggests that the E-P regime could serve as a window of opportunity for testing the ocean rain gauge concept once satellite salinity observations are available.
Description
Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C10025, doi:10.1029/2010JC006937.
Collections
Suggested Citation
Journal of Geophysical Research 116 (2011): C10025Related items
Showing items related by title, author, creator and subject.
-
The global ocean water cycle in atmospheric reanalysis, satellite, and ocean salinity
Yu, Lisan; Jin, Xiangze; Josey, Simon A.; Lee, Tong; Kumar, Arun; Wen, Caihong; Xue, Yan (American Meteorological Society, 2017-05-02)This study provides an assessment of the uncertainty in ocean surface (OS) freshwater budgets and variability using evaporation E and precipitation P from 10 atmospheric reanalyses, two combined satellite-based E − P ... -
Rapid freshening of Iceland Scotland Overflow Water driven by entrainment of a major upper ocean salinity anomaly
Devana, Manish; Johns, William E.; Houk, Adam; Zou, Sijia (American Geophysical Union, 2021-11-15)Newly available mooring observations from the Overturning in the Subpolar North Atlantic Program (OSNAP) show an abrupt decline in Iceland Scotland Overflow (ISOW) salinity from 2017 to 2018 summer. Previous declines in ... -
From salty to fresh—salinity processes in the Upper-ocean Regional Study-2 (SPURS-2) : diagnosing the physics of a rainfall-dominated salinity minimum
Schmitt, Raymond W.; Asher, William E.; Bingham, Frederick; Carton, James A.; Centurioni, Luca R.; Farrar, J. Thomas; Gordon, Arnold L.; Hodges, Benjamin A.; Jessup, Andrew T.; Kessler, William S.; Rainville, Luc; Shcherbina, Andrey Y. (The Oceanography Society, 2015-03)One of the notable features of the global ocean is that the salinity of the North Atlantic is about 1 psu higher than that of the North Pacific. This contrast is thought to be due to one of the large asymmetries in the ...