Grain-size distribution in the mantle wedge of subduction zones
Citable URI
https://hdl.handle.net/1912/4893As published
https://doi.org/10.1029/2011JB008294DOI
10.1029/2011JB008294Keyword
Grain-scale permeability; Mantle wedge flow; Mineral grain size; Seismic attenuation; Subduction zone thermal structureAbstract
Mineral grain size plays an important role in controlling many processes in the mantle wedge of subduction zones, including mantle flow and fluid migration. To investigate the grain-size distribution in the mantle wedge, we coupled a two-dimensional (2-D) steady state finite element thermal and mantle-flow model with a laboratory-derived grain-size evolution model. In our coupled model, the mantle wedge has a composite olivine rheology that incorporates grain-size-dependent diffusion creep and grain-size-independent dislocation creep. Our results show that all subduction settings lead to a characteristic grain-size distribution, in which grain size increases from 10 to 100 μm at the most trenchward part of the creeping region to a few centimeters in the subarc mantle. Despite the large variation in grain size, its effect on the mantle rheology and flow is very small, as >90% of the deformation in the flowing part of the creeping region is accommodated by grain-size-independent dislocation creep. The predicted grain-size distribution leads to a downdip increase in permeability by ∼5 orders of magnitude. This increase is likely to promote greater upward migration of aqueous fluids and melts where the slab reaches ∼100 km depth compared with shallower depths, potentially providing an explanation for the relatively uniform subarc slab depth. Seismic attenuation derived from the predicted grain-size distribution and thermal field is consistent with the observed seismic structure in the mantle wedge at many subduction zones, without requiring a significant contribution by the presence of melt.
Description
Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): B10203, doi:10.1029/2011JB008294.
Collections
Suggested Citation
Journal of Geophysical Research 116 (2011): B10203Related items
Showing items related by title, author, creator and subject.
-
Implications of grain size evolution on the seismic structure of the oceanic upper mantle
Behn, Mark D.; Hirth, Greg; Elsenbeck, James R. (2009-03-04)We construct a 1-D steady-state channel flow model for grain size evolution in the oceanic upper mantle using a composite diffusion-dislocation creep rheology. Grain size evolution is calculated assuming that grain size ... -
Focusing of upward fluid migration beneath volcanic arcs : effect of mineral grain size variation in the mantle wedge
Wada, Ikuko; Behn, Mark D. (John Wiley & Sons, 2015-11-13)We use numerical models to investigate the effects of mineral grain size variation on fluid migration in the mantle wedge at subduction zones and on the location of the volcanic arc. Previous coupled thermal-grain size ... -
Evolution of oceanic margins : rifting in the Gulf of California and sediment diapirism and mantle hydration during subduction
Miller, Nathaniel C. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2013-06)This thesis investigates three processes that control the evolution of oceanic margins. Chapter 2 presents seismic images of a ~2-km-thick evaporite body in Guaymas Basin, central Gulf of California. In rifts, evaporites ...