On the role of eddies and surface forcing in the heat transport and overturning circulation in marginal seas
Citable URI
https://hdl.handle.net/1912/4882As published
https://doi.org/10.1175/2011JCLI4130.1DOI
10.1175/2011JCLI4130.1Keyword
Eddies; Forcing; Meridional overturning circulation; Transport; North Atlantic Ocean; Seas/gulfs/baysAbstract
The factors that determine the heat transport and overturning circulation in marginal seas subject to wind forcing and heat loss to the atmosphere are explored using a combination of a high-resolution ocean circulation model and a simple conceptual model. The study is motivated by the exchange between the subpolar North Atlantic Ocean and the Nordic Seas, a region that is of central importance to the oceanic thermohaline circulation. It is shown that mesoscale eddies formed in the marginal sea play a major role in determining the mean meridional heat transport and meridional overturning circulation across the sill. The balance between the oceanic eddy heat flux and atmospheric cooling, as characterized by a nondimensional number, is shown to be the primary factor in determining the properties of the exchange. Results from a series of eddy-resolving primitive equation model calculations for the meridional heat transport, overturning circulation, density of convective waters, and density of exported waters compare well with predictions from the conceptual model over a wide range of parameter space. Scaling and model results indicate that wind effects are small and the mean exchange is primarily buoyancy forced. These results imply that one must accurately resolve or parameterize eddy fluxes in order to properly represent the mean exchange between the North Atlantic and the Nordic Seas, and thus between the Nordic Seas and the atmosphere, in climate models.
Description
Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 24 (2011): 4844–4858, doi:10.1175/2011JCLI4130.1.
Collections
Suggested Citation
Journal of Climate 24 (2011): 4844–4858Related items
Showing items related by title, author, creator and subject.
-
Near-surface transport pathways in the north Atlantic Ocean : looking for throughput from the subtropical to the subpolar gyre
Rypina, Irina I.; Pratt, Lawrence J.; Lozier, M. Susan (American Meteorological Society, 2011-05)Motivated by discrepancies between Eulerian transport estimates and the behavior of Lagrangian surface drifters, near-surface transport pathways and processes in the North Atlantic are studied using a combination of data, ... -
Lagrangian perspective on the origins of Denmark Strait Overflow
Saberi, Atousa; Haine, Thomas W. N.; Gelderloos, Renske; de Jong, Marieke Femke; Furey, Heather H.; Bower, Amy S. (American Meteorological Society, 2020-08-01)The Denmark Strait Overflow (DSO) is an important contributor to the lower limb of the Atlantic meridional overturning circulation (AMOC). Determining DSO formation and its pathways is not only important for local oceanography ... -
Atlantic meridional overturning circulation: Observed transport and variability
Frajka-Williams, Eleanor; Ansorge, Isabelle; Baehr, Johanna; Bryden, Harry L.; Chidichimo, Maria Paz; Cunningham, Stuart A.; Danabasoglu, Gokhan; Dong, Shenfu; Donohue, Kathleen A.; Elipot, Shane; Heimbach, Patrick; Holliday, Naomi Penny; Hummels, Rebecca; Jackson, Laura C.; Karstensen, Johannes; Lankhorst, Matthias; Le Bras, Isabela A.; Lozier, M. Susan; McDonagh, Elaine L.; Meinen, Christopher S.; Mercier, Herlé; Moat, Bengamin I.; Perez, Renellys; Piecuch, Christopher G.; Rhein, Monika; Srokosz, Meric; Trenberth, Kevin E.; Bacon, Sheldon; Forget, Gael; Goni, Gustavo J.; Kieke, Dagmar; Koelling, Jannes; Lamont, Tarron; McCarthy, Gerard D.; Mertens, Christian; Send, Uwe; Smeed, David A.; Speich, Sabrina; van den Berg, Marcel; Volkov, Denis L.; Wilson, Christopher G. (Frontiers Media, 2019-06-07)The Atlantic Meridional Overturning Circulation (AMOC) extends from the Southern Ocean to the northern North Atlantic, transporting heat northwards throughout the South and North Atlantic, and sinking carbon and nutrients ...