The impact of the North Atlantic Oscillation on the uptake and accumulation of anthropogenic CO2 by North Atlantic Ocean mode waters

View/ Open
Date
2011-09-21Author
Levine, Naomi M.
Concept link
Doney, Scott C.
Concept link
Lima, Ivan D.
Concept link
Wanninkhof, Rik
Concept link
Bates, Nicholas R.
Concept link
Feely, Richard A.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/4857As published
https://doi.org/10.1029/2010GB003892DOI
10.1029/2010GB003892Keyword
North Atlantic Oscillation; Anthropogenic carbon; Carbon cycle; Climate change; Global climate model; Mode watersAbstract
The North Atlantic Ocean accounts for about 25% of the global oceanic anthropogenic carbon sink. This basin experiences significant interannual variability primarily driven by the North Atlantic Oscillation (NAO). A suite of biogeochemical model simulations is used to analyze the impact of interannual variability on the uptake and storage of contemporary and anthropogenic carbon (Canthro) in the North Atlantic Ocean. Greater winter mixing during positive NAO years results in increased mode water formation and subsequent increases in subtropical and subpolar Canthro inventories. Our analysis suggests that changes in mode water Canthro inventories are primarily due to changes in water mass volumes driven by variations in water mass transformation rates rather than local air-sea CO2 exchange. This suggests that a significant portion of anthropogenic carbon found in the ocean interior may be derived from surface waters advected into water formation regions rather than from local gas exchange. Therefore, changes in climate modes, such as the NAO, may alter the residence time of anthropogenic carbon in the ocean by altering the rate of water mass transformation. In addition, interannual variability in Canthro storage increases the difficulty of Canthro detection and attribution through hydrographic observations, which are limited by sparse sampling of subsurface waters in time and space.
Description
Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 25 (2011): GB3022, doi:10.1029/2010GB003892.
Collections
Suggested Citation
Global Biogeochemical Cycles 25 (2011): GB3022Related items
Showing items related by title, author, creator and subject.
-
CMIP5 model intercomparison of freshwater budget and circulation in the North Atlantic
Deshayes, Julie; Curry, Ruth G.; Msadek, Rym (American Meteorological Society, 2014-05-01)The subpolar North Atlantic is a center of variability of ocean properties, wind stress curl, and air–sea exchanges. Observations and hindcast simulations suggest that from the early 1970s to the mid-1990s the subpolar ... -
Wintertime atmospheric response to North Atlantic Ocean circulation variability in a climate model
Frankignoul, Claude; Gastineau, Guillaume; Kwon, Young-Oh (American Meteorological Society, 2015-10-01)Maximum covariance analysis of a preindustrial control simulation of the NCAR Community Climate System Model, version 4 (CCSM4), shows that a barotropic signal in winter broadly resembling a negative phase of the North ... -
Numerical investigations of seasonal and interannual variability of North Pacific Subtropical Mode Water and its implications for Pacific climate variability
Davis, Xujing Jia; Rothstein, Lewis M.; Dewar, William K.; Menemenlis, Dimitris (American Meteorological Society, 2011-06-01)North Pacific Subtropical Mode Water (NPSTMW) is an essential feature of the North Pacific subtropical gyre imparting significant influence on regional SST evolution on seasonal and longer time scales and, as such, is an ...