Is the northern high-latitude land-based CO2 sink weakening?

View/ Open
Date
2011-08-30Author
Hayes, Daniel J.
Concept link
McGuire, A. David
Concept link
Kicklighter, David W.
Concept link
Gurney, Kevin R.
Concept link
Burnside, T. J.
Concept link
Melillo, Jerry M.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/4831As published
https://doi.org/10.1029/2010GB003813DOI
10.1029/2010GB003813Keyword
Carbon cycle; High-latitude ecosystems; ModelingAbstract
Studies indicate that, historically, terrestrial ecosystems of the northern high-latitude region may have been responsible for up to 60% of the global net land-based sink for atmospheric CO2. However, these regions have recently experienced remarkable modification of the major driving forces of the carbon cycle, including surface air temperature warming that is significantly greater than the global average and associated increases in the frequency and severity of disturbances. Whether Arctic tundra and boreal forest ecosystems will continue to sequester atmospheric CO2 in the face of these dramatic changes is unknown. Here we show the results of model simulations that estimate a 41 Tg C yr−1 sink in the boreal land regions from 1997 to 2006, which represents a 73% reduction in the strength of the sink estimated for previous decades in the late 20th century. Our results suggest that CO2 uptake by the region in previous decades may not be as strong as previously estimated. The recent decline in sink strength is the combined result of (1) weakening sinks due to warming-induced increases in soil organic matter decomposition and (2) strengthening sources from pyrogenic CO2 emissions as a result of the substantial area of boreal forest burned in wildfires across the region in recent years. Such changes create positive feedbacks to the climate system that accelerate global warming, putting further pressure on emission reductions to achieve atmospheric stabilization targets.
Description
Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 25 (2011): GB3018, doi:10.1029/2010GB003813.
Collections
Suggested Citation
Global Biogeochemical Cycles 25 (2011): GB3018Related items
Showing items related by title, author, creator and subject.
-
Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems
Euskirchen, Eugenie; McGuire, A. David; Kicklighter, David W.; Zhuang, Qianlai; Clein, Joy S.; Dargaville, R. J.; Dye, D. G.; Kimball, John S.; McDonald, Kyle C.; Melillo, Jerry M.; Romanovsky, Vladimir; Smith, N. V. (2005-10-07)In terrestrial high-latitude regions, observations indicate recent changes in snow cover, permafrost, and soil freeze-thaw transitions due to climate change. These modifications may result in temporal shifts in the growing ... -
Baleen whales are not important as prey for killer whales Orcinus orca in high-latitude regions
Mehta, Amee V.; Allen, Judith M.; Constantine, Rochelle; Garrigue, Claire; Jann, Beatrice; Jenner, Curt; Marx, Marilyn K.; Matkin, Craig O.; Mattila, David K.; Minton, Gianna; Mizroch, Sally A.; Olavarría, Carlos; Robbins, Jooke; Russell, Kirsty G.; Seton, Rosemary E.; Steiger, Gretchen H.; Víkingsson, Gísli A.; Wade, Paul R.; Witteveen, Briana H.; Clapham, Phillip J. (Inter-Research, 2007-10-25)Certain populations of killer whales Orcinus orca feed primarily or exclusively on marine mammals. However, whether or not baleen whales represent an important prey source for killer whales is debatable. A hypothesis by ... -
A high-resolution modeling study on diel and seasonal vertical migrations of high-latitude copepods
Bandara, Kanchana; Varpe, Øystein; Ji, Rubao; Eiane, Ketil (Elsevier, 2017-12-26)Despite diel and seasonal vertical migrations (DVM and SVM) of high-latitude zooplankton have been studied since the late-19th century, questions still remain about the influence of environmental seasonality on vertical ...