• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Marine Biological Laboratory
    • Eugene Bell Center for Regenerative Biology and Tissue Engineering
    • Bell Center Publications
    • View Item
    •   WHOAS Home
    • Marine Biological Laboratory
    • Eugene Bell Center for Regenerative Biology and Tissue Engineering
    • Bell Center Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Extracellular electrical fields direct wound healing and regeneration

    Thumbnail
    View/Open
    BioBull-79.pdf (562.7Kb)
    Date
    2011-08
    Author
    Messerli, Mark A.  Concept link
    Graham, David M.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/4797
    As published
    https://doi.org/10.1086/BBLv221n1p79
    DOI
    10.1086/BBLv221n1p79
    Abstract
    Endogenous DC electric fields (EFs) are important, fundamental components of development, regeneration, and wound healing. The fields are the result of polarized ion transport and current flow through electrically conductive pathways. Nullification of endogenous EFs with pharmacological agents or applied EFs of opposite polarity disturbs the aforementioned processes, while enhancement increases the rate of wound closure and the extent of regeneration. EFs are applied to humans in the clinic, to provide an overwhelming signal for the enhancement of healing of chronic wounds. Although clinical trials, spanning a course of decades, have shown that applied EFs enhance healing of chronic wounds, the mechanisms by which cells sense and respond to these weak cues remains unknown. EFs are thought to influence many different processes in vivo. However, under more rigorously controlled conditions in vitro, applied EFs induce cellular polarity and direct migration and outgrowth. Here we review the generation of endogenous EFs, the results of their alteration, and the mechanisms by which cells may sense these weak fields. Understanding the mechanisms by which native and applied EFs direct development and repair will enable current and future therapeutic applications to be optimized.
    Description
    Author Posting. © Marine Biological Laboratory, 2011. This article is posted here by permission of Marine Biological Laboratory for personal use, not for redistribution. The definitive version was published in Biological Bulletin 221 (2011): 79-92.
    Collections
    • Bell Center Publications
    Suggested Citation
    Biological Bulletin 221 (2011): 79-92
     
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo