• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Dynamics of freshwater plumes : observations and numerical modeling of the wind-forced response and alongshore freshwater transport

    Thumbnail
    View/Open
    Fong_thesis.pdf (5.542Mb)
    Date
    1998-06
    Author
    Fong, Derek A.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/4784
    Location
    Gulf of Maine
    DOI
    10.1575/1912/4784
    Keyword
     Oceanic mixing; Hydrography; Ocean circulation 
    Abstract
    A freshwater plume often forms when a river or an estuary discharges water onto the continental shelf. Freshwater plumes are ubiquitous features of the coastal ocean and usually leave a striking signature in the coastal hydrography. The present study combines both hydrographic data and idealized numerical simulations to examine how ambient currents and winds influence the transport and mixing of plume waters. The first portion of the thesis considers the alongshore transport of freshwater using idealized numerical simulations. In the absence of any ambient current, the downstream coastal current only carries a fraction of the discharged fresh water; the remaining fraction recirculates in a continually growing "bulge" of fresh water in the vicinity of the river mouth. The fraction of fresh water transported in the coastal current is dependent on the source conditions at the river mouth. The presence of an ambient current augments the transport in the plume so that its freshwater transport matches the freshwater source. For any ambient current in the same direction as the geostrophic coastal current, the plume will evolve to a steady-state width. A key result is that an external forcing agent is required in order for the entire freshwater volume discharged by a river to be transported as a coastal current. The next section of the thesis addresses the wind-induced advection of a river plume, using hydrographic data collected in the western Gulf of Maine. The observations suggest that the plume's cross-shore structure varies markedly as a function of fluctuations in alongshore wind forcing. Consistent with Ekman dynamics, upwelling favorable winds spread the plume offshore, at times widening it to over 50 km in offshore extent, while downwelling favorable winds narrow the plume width to a few Rossby radii. Near-surface current meters show significant correlations between cross-shore currents and alongshore wind stress, consistent with Ekman theory. Estimates of the terms in the alongshore momentum equation calculated from moored current meter arrays also indicate an approximate Ekman balance within the plume. A significant correlation between alongshore currents and alongshore wind stress suggests that interfacial drag may be important. The final section of the thesis is an investigation of the advection and mixing of a surface-trapped river plume in the presence of an upwelling favorable wind stress, using a three-dimensional model in a simple, rectangular domain. Model simulations demonstrate that the plume thins and is advected offshore by the crossshore Ekman transport. The thinned plume is susceptible to significant mixing due to the vertically sheared horizontal currents. The first order plume response is explained by Ekman dynamics and a Richardson number mixing criterion. Under a sustained wind event, the plume evolves to a quasi-steady, uniform thickness. The rate of mixing slowly decreases for longer times as the stratification in the plume weakens, but mixing persists under a sustained upwelling wind until the plume is destroyed. Mixing is most intense at the seaward plume front due to an Ekman straining mechanism in which the advection of cross-shore salinity gradients balances vertical mixing. The mean mixing rate observed in the plume is consistent with the mixing power law suggested by previous studies of I-D mixing, in spite of the two-dimensional dynamics driving the mixing in the plume.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 1998
    Collections
    • Physical Oceanography (PO)
    • WHOI Theses
    Suggested Citation
    Thesis: Fong, Derek A., "Dynamics of freshwater plumes : observations and numerical modeling of the wind-forced response and alongshore freshwater transport", 1998-06, DOI:10.1575/1912/4784, https://hdl.handle.net/1912/4784
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Oceanic fluxes of mass, heat, and freshwater : a global estimate and perspective 

      Macdonald, Alison M. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1995-08)
      Data from fifteen globally distributed, modern, high resolution, hydrographic oceanic transects are combined in an inverse calculation using large scale box models. The models provide estimates of the global meridional ...
    • Thumbnail

      Large scale oceanic circulation and fluxes of freshwater, heat, nutrients and oxygen 

      Ganachaud, Alexandre S. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1999-12)
      A new, global inversion is used to estimate the large scale oceanic circulation based on the World Ocean Circulation Experiment and Java Australia Dynamic Experiment hydrographic data. A linear inverse "box" model is ...
    • Thumbnail

      The distribution, abundance and ecology of mixotrophic algae in marine and freshwater plankton communities 

      Arenovski, Andrea L. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1994-09)
      Mixotrophic algae are algae that combine photosynthesis with phagotrophy to satisfy nutritional requirements. Mixotrophic algae have been found to dominate the nanoplankton assemblage in some aquatic environments, and ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo