Hydrothermally-induced melt lens cooling and segmentation along the axis of fast- and intermediate-spreading centers

View/ Open
Date
2011-07-28Author
Fontaine, Fabrice J.
Concept link
Olive, Jean-Arthur L.
Concept link
Cannat, Mathilde
Concept link
Escartin, Javier E.
Concept link
Perol, Thibaut
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/4768As published
https://doi.org/10.1029/2011GL047798DOI
10.1029/2011GL047798Keyword
AMC; Hydrothermal; Mid-ocean ridges; SegmentationAbstract
The heat output and thermal regime of fast and intermediate spreading centers are strongly controlled by boundary layer processes between the hydrothermal system and the underlying crustal magma chamber (AMC), which remain to be fully understood. Here, we model the interactions between a shallow two-dimensional cellular hydrothermal system at temperatures <700°C, and a deeper AMC at temperatures up to 1200°C. We show that hydrothermal cooling can freeze the AMC in years to decades, unless melt injections occur on commensurate timescales. Moreover, the differential cooling between upflow and downflow zones can segment the AMC into mush and melt regions that alternate on sub-kilometric length scales. These predictions are consistent with along-axis variations in AMC roof depth observed in ophiolites and oceanic settings. In this respect, fine-scale geophysical investigations of the structure of AMCs may help constrain hydrothermal recharge locations associated with active hydrothermal sites.
Description
Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 38 (2011): L14307, doi:10.1029/2011GL047798.
Collections
Suggested Citation
Geophysical Research Letters 38 (2011): L14307Related items
Showing items related by title, author, creator and subject.
-
Heat flow variations on a slowly accreting ridge : constraints on the hydrothermal and conductive cooling for the Lucky Strike segment (Mid-Atlantic Ridge, 37°N)
Lucazeau, Francis; Bonneville, Alain; Escartin, Javier E.; von Herzen, Richard P.; Gouze, Philippe; Carton, Helene; Cannat, Mathilde; Vidal, Valerie; Adam, Claudia (American Geophysical Union, 2006-07-27)We report 157 closely spaced heat flow measurements along the Lucky Strike segment in the Mid-Atlantic Ridge (MAR) for ages of the ocean floor between 0 and 11 Ma. On the eastern flank of a volcanic plateau delimiting ... -
Crustal structure of the Trans-Atlantic Geotraverse (TAG) segment (Mid-Atlantic Ridge, 26°10′N) : implications for the nature of hydrothermal circulation and detachment faulting at slow spreading ridges
Canales, J. Pablo; Sohn, Robert A.; deMartin, Brian J. (American Geophysical Union, 2007-08-09)New seismic refraction data reveal that hydrothermal circulation at the Trans-Atlantic Geotraverse (TAG) hydrothermal field on the Mid-Atlantic Ridge at 26°10′N is not driven by energy extracted from shallow or mid-crustal ... -
Analysis and modeling of hydrothermal plume data acquired from the 85°E segment of the Gakkel Ridge
Stranne, Christian; Sohn, Robert A.; Liljebladh, Bengt; Nakamura, Ko-ichi (American Geophysical Union, 2010-06-30)We use data from a CTD plume-mapping campaign conducted during the Arctic Gakkel Vents (AGAVE) expedition in 2007 to constrain the nature of hydrothermal processes on the Gakkel Ridge at 85°E. Thermal and redox potential ...