• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Marine Biological Laboratory
    • Ecosystems Center
    • View Item
    •   WHOAS Home
    • Marine Biological Laboratory
    • Ecosystems Center
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Looking deeper into the soil : biophysical controls and seasonal lags of soil CO2 production and efflux

    Thumbnail
    View/Open
    09-0693.1.pdf (365.5Kb)
    Date
    2010-09
    Author
    Vargas, Rodrigo  Concept link
    Baldocchi, Dennis D.  Concept link
    Allen, Michael F.  Concept link
    Bahn, Michael  Concept link
    Black, T. Andrew  Concept link
    Collins, Scott L.  Concept link
    Yuste, Jorge Curiel  Concept link
    Hirano, Takashi  Concept link
    Jassal, Rachhpal S.  Concept link
    Pumpanen, Jukka  Concept link
    Tang, Jianwu  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/4711
    As published
    https://doi.org/10.1890/09-0693.1
    DOI
    10.1890/09-0693.1
    Keyword
     Lags; Moderate-resolution imaging spectroradiometer (MODIS); Photosynthesis; Soil CO2 efflux; Soil CO2 production; Soil CO2 sensors; Soil respiration 
    Abstract
    We seek to understand how biophysical factors such as soil temperature (Ts), soil moisture (θ), and gross primary production (GPP) influence CO2 fluxes across terrestrial ecosystems. Recent advancements in automated measurements and remote-sensing approaches have provided time series in which lags and relationships among variables can be explored. The purpose of this study is to present new applications of continuous measurements of soil CO2 efflux (F0) and soil CO2 concentrations measurements. Here we explore how variation in Ts, θ, and GPP (derived from NASA's moderate-resolution imaging spectroradiometer [MODIS]) influence F0 and soil CO2 production (Ps). We focused on seasonal variation and used continuous measurements at a daily timescale across four vegetation types at 13 study sites to quantify: (1) differences in seasonal lags between soil CO2 fluxes and Ts, θ, and GPP and (2) interactions and relationships between CO2 fluxes with Ts, θ, and GPP. Mean annual Ts did not explain annual F0 and Ps among vegetation types, but GPP explained 73% and 30% of the variation, respectively. We found evidence that lags between soil CO2 fluxes and Ts or GPP provide insights into the role of plant phenology and information relevant about possible timing of controls of autotrophic and heterotrophic processes. The influences of biophysical factors that regulate daily F0 and Ps are different among vegetation types, but GPP is a dominant variable for explaining soil CO2 fluxes. The emergence of long-term automated soil CO2 flux measurement networks provides a unique opportunity for extended investigations into F0 and Ps processes in the near future.
    Description
    Author Posting. © Ecological Society of America, 2010. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 20 (2010): 1569–1582, doi:10.1890/09-0693.1.
    Collections
    • Ecosystems Center
    Suggested Citation
    Ecological Applications 20 (2010): 1569–1582
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Net community production and gross primary production rates in the western equatorial Pacific 

      Stanley, Rachel H. R.; Kirkpatrick, John B.; Cassar, Nicolas; Barnett, Bruce A.; Bender, Michael L. (American Geophysical Union, 2010-10-12)
      Net community production (NCP) and gross primary production (GPP) are two key metrics for quantifying the biological carbon cycle. In this study, we present a detailed characterization of NCP and GPP in the western equatorial ...
    • Thumbnail

      Challenges of modeling depth-integrated marine primary productivity over multiple decades : a case study at BATS and HOT 

      Saba, Vincent S.; Friedrichs, Marjorie A. M.; Carr, Mary-Elena; Antoine, David; Armstrong, Robert A.; Asanuma, Ichio; Aumont, Olivier; Bates, Nicholas R.; Behrenfeld, Michael J.; Bennington, Val; Bopp, Laurent; Bruggeman, Jorn; Buitenhuis, Erik T.; Church, Matthew J.; Ciotti, Aurea M.; Doney, Scott C.; Dowell, Mark; Dunne, John P.; Dutkiewicz, Stephanie; Gregg, Watson; Hoepffner, Nicolas; Hyde, Kimberly J. W.; Ishizaka, Joji; Kameda, Takahiko; Karl, David M.; Lima, Ivan D.; Lomas, Michael W.; Marra, John F.; McKinley, Galen A.; Melin, Frederic; Moore, J. Keith; Morel, Andre; O'Reilly, John; Salihoglu, Baris; Scardi, Michele; Smyth, Tim J.; Tang, Shilin; Tjiputra, Jerry; Uitz, Julia; Vichi, Marcello; Waters, Kirk; Westberry, Toby K.; Yool, Andrew (American Geophysical Union, 2010-09-15)
      The performance of 36 models (22 ocean color models and 14 biogeochemical ocean circulation models (BOGCMs)) that estimate depth-integrated marine net primary productivity (NPP) was assessed by comparing their output to ...
    • Thumbnail

      Climate-induced interannual variability of marine primary and export production in three global coupled climate carbon cycle models 

      Schneider, B.; Bopp, Laurent; Gehlen, M.; Segschneider, J.; Frolicher, T. L.; Cadule, P.; Friedlingstein, Pierre; Doney, Scott C.; Behrenfeld, Michael J.; Joos, Fortunat (Copernicus Publications on behalf of the European Geosciences Union, 2008-04-23)
      Fully coupled climate carbon cycle models are sophisticated tools that are used to predict future climate change and its impact on the land and ocean carbon cycles. These models should be able to adequately represent natural ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo