Looking deeper into the soil : biophysical controls and seasonal lags of soil CO2 production and efflux

View/ Open
Date
2010-09Author
Vargas, Rodrigo
Concept link
Baldocchi, Dennis D.
Concept link
Allen, Michael F.
Concept link
Bahn, Michael
Concept link
Black, T. Andrew
Concept link
Collins, Scott L.
Concept link
Yuste, Jorge Curiel
Concept link
Hirano, Takashi
Concept link
Jassal, Rachhpal S.
Concept link
Pumpanen, Jukka
Concept link
Tang, Jianwu
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/4711As published
https://doi.org/10.1890/09-0693.1DOI
10.1890/09-0693.1Keyword
Lags; Moderate-resolution imaging spectroradiometer (MODIS); Photosynthesis; Soil CO2 efflux; Soil CO2 production; Soil CO2 sensors; Soil respirationAbstract
We seek to understand how biophysical factors such as soil temperature (Ts), soil moisture (θ), and gross primary production (GPP) influence CO2 fluxes across terrestrial ecosystems. Recent advancements in automated measurements and remote-sensing approaches have provided time series in which lags and relationships among variables can be explored. The purpose of this study is to present new applications of continuous measurements of soil CO2 efflux (F0) and soil CO2 concentrations measurements. Here we explore how variation in Ts, θ, and GPP (derived from NASA's moderate-resolution imaging spectroradiometer [MODIS]) influence F0 and soil CO2 production (Ps). We focused on seasonal variation and used continuous measurements at a daily timescale across four vegetation types at 13 study sites to quantify: (1) differences in seasonal lags between soil CO2 fluxes and Ts, θ, and GPP and (2) interactions and relationships between CO2 fluxes with Ts, θ, and GPP. Mean annual Ts did not explain annual F0 and Ps among vegetation types, but GPP explained 73% and 30% of the variation, respectively. We found evidence that lags between soil CO2 fluxes and Ts or GPP provide insights into the role of plant phenology and information relevant about possible timing of controls of autotrophic and heterotrophic processes. The influences of biophysical factors that regulate daily F0 and Ps are different among vegetation types, but GPP is a dominant variable for explaining soil CO2 fluxes. The emergence of long-term automated soil CO2 flux measurement networks provides a unique opportunity for extended investigations into F0 and Ps processes in the near future.
Description
Author Posting. © Ecological Society of America, 2010. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 20 (2010): 1569–1582, doi:10.1890/09-0693.1.
Collections
Suggested Citation
Ecological Applications 20 (2010): 1569–1582Related items
Showing items related by title, author, creator and subject.
-
Net community production and gross primary production rates in the western equatorial Pacific
Stanley, Rachel H. R.; Kirkpatrick, John B.; Cassar, Nicolas; Barnett, Bruce A.; Bender, Michael L. (American Geophysical Union, 2010-10-12)Net community production (NCP) and gross primary production (GPP) are two key metrics for quantifying the biological carbon cycle. In this study, we present a detailed characterization of NCP and GPP in the western equatorial ... -
Challenges of modeling depth-integrated marine primary productivity over multiple decades : a case study at BATS and HOT
Saba, Vincent S.; Friedrichs, Marjorie A. M.; Carr, Mary-Elena; Antoine, David; Armstrong, Robert A.; Asanuma, Ichio; Aumont, Olivier; Bates, Nicholas R.; Behrenfeld, Michael J.; Bennington, Val; Bopp, Laurent; Bruggeman, Jorn; Buitenhuis, Erik T.; Church, Matthew J.; Ciotti, Aurea M.; Doney, Scott C.; Dowell, Mark; Dunne, John P.; Dutkiewicz, Stephanie; Gregg, Watson; Hoepffner, Nicolas; Hyde, Kimberly J. W.; Ishizaka, Joji; Kameda, Takahiko; Karl, David M.; Lima, Ivan D.; Lomas, Michael W.; Marra, John F.; McKinley, Galen A.; Melin, Frederic; Moore, J. Keith; Morel, Andre; O'Reilly, John; Salihoglu, Baris; Scardi, Michele; Smyth, Tim J.; Tang, Shilin; Tjiputra, Jerry; Uitz, Julia; Vichi, Marcello; Waters, Kirk; Westberry, Toby K.; Yool, Andrew (American Geophysical Union, 2010-09-15)The performance of 36 models (22 ocean color models and 14 biogeochemical ocean circulation models (BOGCMs)) that estimate depth-integrated marine net primary productivity (NPP) was assessed by comparing their output to ... -
Climate-induced interannual variability of marine primary and export production in three global coupled climate carbon cycle models
Schneider, B.; Bopp, Laurent; Gehlen, M.; Segschneider, J.; Frolicher, T. L.; Cadule, P.; Friedlingstein, Pierre; Doney, Scott C.; Behrenfeld, Michael J.; Joos, Fortunat (Copernicus Publications on behalf of the European Geosciences Union, 2008-04-23)Fully coupled climate carbon cycle models are sophisticated tools that are used to predict future climate change and its impact on the land and ocean carbon cycles. These models should be able to adequately represent natural ...