Detecting aseismic strain transients from seismicity data
Citable URI
https://hdl.handle.net/1912/4660As published
https://doi.org/10.1029/2010JB007537DOI
10.1029/2010JB007537Keyword
ETAS model; Rate-state model; Earthquake triggeringAbstract
Aseismic deformation transients such as fluid flow, magma migration, and slow slip can trigger changes in seismicity rate. We present a method that can detect these seismicity rate variations and utilize these anomalies to constrain the underlying variations in stressing rate. Because ordinary aftershock sequences often obscure changes in the background seismicity caused by aseismic processes, we combine the stochastic Epidemic Type Aftershock Sequence model that describes aftershock sequences well and the physically based rate- and state-dependent friction seismicity model into a single seismicity rate model that models both aftershock activity and changes in background seismicity rate. We implement this model into a data assimilation algorithm that inverts seismicity catalogs to estimate space-time variations in stressing rate. We evaluate the method using a synthetic catalog, and then apply it to a catalog of M ≥ 1.5 events that occurred in the Salton Trough from 1990 to 2009. We validate our stressing rate estimates by comparing them to estimates from a geodetically derived slip model for a large creep event on the Obsidian Buttes fault. The results demonstrate that our approach can identify large aseismic deformation transients in a multidecade long earthquake catalog and roughly constrain the absolute magnitude of the stressing rate transients. Our method can therefore provide a way to detect aseismic transients in regions where geodetic resolution in space or time is poor.
Description
Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): B06305, doi:10.1029/2010JB007537.
Collections
Suggested Citation
Journal of Geophysical Research 116 (2011): B06305Related items
Showing items related by title, author, creator and subject.
-
Cohesive and mixed sediment in the Regional Ocean Modeling System (ROMS v3.6) implemented in the Coupled Ocean–Atmosphere–Wave–Sediment Transport Modeling System (COAWST r1234)
Sherwood, Christopher R.; Aretxabaleta, Alfredo L.; Harris, Courtney K.; Rinehimer, J. Paul; Verney, Romaric; Ferré, Bénédicte (Copernicus Publications on behalf of the European Geosciences Union, 2018-05-14)We describe and demonstrate algorithms for treating cohesive and mixed sediment that have been added to the Regional Ocean Modeling System (ROMS version 3.6), as implemented in the Coupled Ocean–Atmosphere–Wave–Sediment ... -
Sediment transport model including short-lived radioisotopes: Model description and idealized test cases
Birchler, Justin J.; Harris, Courtney K.; Sherwood, Christopher R.; Kniskern, Tara A. (American Meteorological Society, 2018-11-27)Geochronologies derived from sediment cores in coastal locations are often used to infer event bed characteristics such as deposit thicknesses and accumulation rates. Such studies commonly use naturally occurring, short-lived ... -
Incorporating ‘recruitment’ in matrix projection models : estimation, parameters, and the influence of model structure
Cooch, Evan G.; Cam, Emmanuelle; Caswell, Hal (2010-07)Advances in the estimation of population parameters using encounter data from marked individuals have made it possible to include estimates of the probability of recruitment in population projection models. However, ...