• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Geology and Geophysics (G&G)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Geology and Geophysics (G&G)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Detecting aseismic strain transients from seismicity data

    Thumbnail
    View/Open
    2010JB007537.pdf (1.010Mb)
    Date
    2011-06-17
    Author
    Llenos, Andrea L.  Concept link
    McGuire, Jeffrey J.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/4660
    As published
    https://doi.org/10.1029/2010JB007537
    DOI
    10.1029/2010JB007537
    Keyword
     ETAS model; Rate-state model; Earthquake triggering 
    Abstract
    Aseismic deformation transients such as fluid flow, magma migration, and slow slip can trigger changes in seismicity rate. We present a method that can detect these seismicity rate variations and utilize these anomalies to constrain the underlying variations in stressing rate. Because ordinary aftershock sequences often obscure changes in the background seismicity caused by aseismic processes, we combine the stochastic Epidemic Type Aftershock Sequence model that describes aftershock sequences well and the physically based rate- and state-dependent friction seismicity model into a single seismicity rate model that models both aftershock activity and changes in background seismicity rate. We implement this model into a data assimilation algorithm that inverts seismicity catalogs to estimate space-time variations in stressing rate. We evaluate the method using a synthetic catalog, and then apply it to a catalog of M ≥ 1.5 events that occurred in the Salton Trough from 1990 to 2009. We validate our stressing rate estimates by comparing them to estimates from a geodetically derived slip model for a large creep event on the Obsidian Buttes fault. The results demonstrate that our approach can identify large aseismic deformation transients in a multidecade long earthquake catalog and roughly constrain the absolute magnitude of the stressing rate transients. Our method can therefore provide a way to detect aseismic transients in regions where geodetic resolution in space or time is poor.
    Description
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): B06305, doi:10.1029/2010JB007537.
    Collections
    • Geology and Geophysics (G&G)
    Suggested Citation
    Journal of Geophysical Research 116 (2011): B06305
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Cohesive and mixed sediment in the Regional Ocean Modeling System (ROMS v3.6) implemented in the Coupled Ocean–Atmosphere–Wave–Sediment Transport Modeling System (COAWST r1234) 

      Sherwood, Christopher R.; Aretxabaleta, Alfredo L.; Harris, Courtney K.; Rinehimer, J. Paul; Verney, Romaric; Ferré, Bénédicte (Copernicus Publications on behalf of the European Geosciences Union, 2018-05-14)
      We describe and demonstrate algorithms for treating cohesive and mixed sediment that have been added to the Regional Ocean Modeling System (ROMS version 3.6), as implemented in the Coupled Ocean–Atmosphere–Wave–Sediment ...
    • Thumbnail

      Sediment transport model including short-lived radioisotopes: Model description and idealized test cases 

      Birchler, Justin J.; Harris, Courtney K.; Sherwood, Christopher R.; Kniskern, Tara A. (American Meteorological Society, 2018-11-27)
      Geochronologies derived from sediment cores in coastal locations are often used to infer event bed characteristics such as deposit thicknesses and accumulation rates. Such studies commonly use naturally occurring, short-lived ...
    • Thumbnail

      Incorporating ‘recruitment’ in matrix projection models : estimation, parameters, and the influence of model structure 

      Cooch, Evan G.; Cam, Emmanuelle; Caswell, Hal (2010-07)
      Advances in the estimation of population parameters using encounter data from marked individuals have made it possible to include estimates of the probability of recruitment in population projection models. However, ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo