Show simple item record

dc.contributor.authorIsaksen, Ivar S. A.
dc.contributor.authorGauss, Michael
dc.contributor.authorMyhre, Gunnar
dc.contributor.authorWalter Anthony, Katey M.
dc.contributor.authorRuppel, Carolyn D.
dc.date.accessioned2011-05-09T18:39:48Z
dc.date.available2011-10-20T08:28:28Z
dc.date.issued2011-04-20
dc.identifier.citationGlobal Biogeochemical Cycles 25 (2011): GB2002en_US
dc.identifier.urihttp://hdl.handle.net/1912/4553
dc.descriptionAuthor Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 25 (2011): GB2002, doi:10.1029/2010GB003845.en_US
dc.description.abstractThe magnitude and feedbacks of future methane release from the Arctic region are unknown. Despite limited documentation of potential future releases associated with thawing permafrost and degassing methane hydrates, the large potential for future methane releases calls for improved understanding of the interaction of a changing climate with processes in the Arctic and chemical feedbacks in the atmosphere. Here we apply a “state of the art” atmospheric chemistry transport model to show that large emissions of CH 4 would likely have an unexpectedly large impact on the chemical composition of the atmosphere and on radiative forcing (RF). The indirect contribution to RF of additional methane emission is particularly important. It is shown that if global methane emissions were to increase by factors of 2.5 and 5.2 above current emissions, the indirect contributions to RF would be about 250% and 400%, respectively, of the RF that can be attributed to directly emitted methane alone. Assuming several hypothetical scenarios of CH 4 release associated with permafrost thaw, shallow marine hydrate degassing, and submarine landslides, we find a strong positive feedback on RF through atmospheric chemistry. In particular, the impact of CH 4 is enhanced through increase of its lifetime, and of atmospheric abundances of ozone, stratospheric water vapor, and CO 2 as a result of atmospheric chemical processes. Despite uncertainties in emission scenarios, our results provide a better understanding of the feedbacks in the atmospheric chemistry that would amplify climate warming.en_US
dc.format.mimetypeapplication/pdf
dc.language.isoen_USen_US
dc.publisherAmerican Geophysical Unionen_US
dc.relation.urihttps://doi.org/10.1029/2010GB003845
dc.subjectMethaneen_US
dc.subjectPermafrosten_US
dc.subjectRadiative forcingen_US
dc.titleStrong atmospheric chemistry feedback to climate warming from Arctic methane emissionsen_US
dc.typeArticleen_US
dc.identifier.doi10.1029/2010GB003845


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record