Hydrothermal venting in magma deserts : the ultraslow-spreading Gakkel and Southwest Indian Ridges

View/ Open
Date
2004-08-18Author
Baker, Edward T.
Concept link
Edmonds, Henrietta N.
Concept link
Michael, Peter J.
Concept link
Bach, Wolfgang
Concept link
Dick, Henry J. B.
Concept link
Snow, Jonathan E.
Concept link
Walker, Sharon L.
Concept link
Banerjee, Neil R.
Concept link
Langmuir, Charles H.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/453As published
https://doi.org/10.1029/2004GC000712DOI
10.1029/2004GC000712Keyword
Gakkel Ridge; Hydrothermal venting; Magmatic budget; Southwest Indian Ridge; Ultraslow ridgesAbstract
Detailed hydrothermal surveys over ridges with spreading rates of 50–150 mm/yr have found a linear relation between spreading rate and the spatial frequency of hydrothermal venting, but the validity of this relation at slow and ultraslow ridges is unproved. Here we compare hydrothermal plume surveys along three sections of the Gakkel Ridge (Arctic Ocean) and the Southwest Indian Ridge (SWIR) to determine if hydrothermal activity is similarly distributed among these ultraslow ridge sections and if these distributions follow the hypothesized linear trend derived from surveys along fast ridges. Along the Gakkel Ridge, most apparent vent sites occur on volcanic highs, and the extraordinarily weak vertical density gradient of the deep Arctic permits plumes to rise above the axial bathymetry. Individual plumes can thus be extensively dispersed along axis, to distances >200 km, and ∼75% of the total axial length surveyed is overlain by plumes. Detailed mapping of these plumes points to only 9–10 active sites in 850 km, however, yielding a site frequency F s , sites/100 km of ridge length, of 1.1–1.2. Plumes detected along the SWIR are considerably less extensive for two reasons: an apparent paucity of active vent fields on volcanic highs and a normal deep-ocean density gradient that prevents extended plume rise. Along a western SWIR section (10°–23°E) we identify 3–8 sites, so F s = 0.3–0.8; along a previously surveyed 440 km section of the eastern SWIR (58°–66°E), 6 sites yield F s = 1.3. Plotting spreading rate (us) versus F s, the ultraslow ridges and eight other ridge sections, spanning the global range of spreading rate, establish a robust linear trend (F s = 0.98 + 0.015us), implying that the long-term heat supply is the first-order control on the global distribution of hydrothermal activity. Normalizing F s to the delivery rate of basaltic magma suggests that ultraslow ridges are several times more efficient than faster-spreading ridges in supporting active vent fields. This increased efficiency could derive from some combination of three-dimensional magma focusing at volcanic centers, deep mining of heat from gabbroic intrusions and direct cooling of the upper mantle, and nonmagmatic heat supplied by exothermic serpentinization.
Description
Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 5 (2004): Q08002, doi:10.1029/2004GC000712.
Suggested Citation
Geochemistry Geophysics Geosystems 5 (2004): Q08002Related items
Showing items related by title, author, creator and subject.
-
Controls on melt migration and extraction at the ultraslow Southwest Indian Ridge 10°–16°E
Montesi, Laurent G. J.; Behn, Mark D.; Hebert, Laura B.; Lin, Jian; Barry, Jennifer L. (American Geophysical Union, 2011-10-04)Crustal thickness variations at the ultraslow spreading 10–16°E region of the Southwest Indian Ridge are used to constrain melt migration processes. In the study area, ridge morphology correlates with the obliquity of the ... -
The influence of ridge geometry at the ultraslow-spreading Southwest Indian Ridge (9º-25ºE) : basalt composition sensitivity to variations in source and process
Standish, Jared J. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2006-02)Between 9º-25º E on the ultraslow-spreading Southwest Indian Ridge lie two sharply contrasting supersegments. One 630 km long supersegment erupts N-MORB that is progressively enriched in incompatible element concentrations ... -
Young off-axis volcanism along the ultraslow-spreading Southwest Indian Ridge
Standish, Jared J.; Sims, Kenneth W. W. (2010-02-09)Mid-ocean ridge crustal accretion occurs continuously at all spreading rates through a combination of magmatic and tectonic processes. Fast to slow spreading ridges are largely built by adding magma to narrowly focused ...