Biological consumption of carbon monoxide in Delaware Bay, NW Atlantic and Beaufort Sea

View/ Open
Date
2005-04-13Author
Xie, Huixiang
Concept link
Zafiriou, Oliver C.
Concept link
Umile, Thomas P.
Concept link
Kieber, David J.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/4493As published
https://doi.org/10.3354/meps290001DOI
10.3354/meps290001Abstract
Microbial consumption is the dominant sink of oceanic carbon monoxide (CO), one of the major carbon-containing photoproducts of chromophoric dissolved organic matter in marine waters. This study presents first-order microbial CO consumption rate constants (kCO) determined using whole-water dark incubations in summer and fall in diverse marine ecosystems covering the Delaware Bay, NW Atlantic, and Beaufort Sea. The microbial CO consumption rate constant, kCO (mean ± SD) was 1.11 ± 0.76 h–1 in the Delaware Bay, 0.33 ± 0.26 h–1 in the coastal Atlantic, 0.099 ± 0.054 h–1 in the open Atlantic, 0.040 ± 0.012 h–1 in the coastal Beaufort Sea and 0.020 ± 0.0060 h–1 in the offshore Beaufort Sea. The kCO in the Delaware Bay covaried with chlorophyll a concentration ([chl a]), rising with increasing salinity in the range 0 to 19 and diminishing with further increasing salinity. The kCO in the Beaufort Sea is significantly positively correlated with [chl a]. Both the Atlantic and cross-system data sets showed significant positive correlations between kCO and the product of [chl a] and water temperature, suggesting that [chl a] can be used as an indicator of CO-consuming bacterial activity in the areas and seasons sampled in this study. Microbial CO consumption was shown to follow Wright-Hobbie kinetics, with variable but low half-saturation concentrations: ~1 nM in the Beaufort Sea and Gulf Stream and 2 to 18 nM in the coastal NW Atlantic. These low half-saturation concentrations suggest that microbial CO consumption in seawater is at times partly saturated, and that some previous microbial CO consumption rates determined with the commonly used 14CO method could be underestimates due to the addition of 14CO as a tracer substrate. The present study provides valuable data for coastal and Arctic waters whose kCO values are poorly or not constrained, including extensive data on the dependence of kCO on the concentration of CO.
Description
Author Posting. © Inter-Research, 2005. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 290 (2005): 1-14, doi:10.3354/meps290001.
Collections
Suggested Citation
Marine Ecology Progress Series 290 (2005): 1-14Related items
Showing items related by title, author, creator and subject.
-
Identity and dynamics of the microbial community responsible for carbon monoxide oxidation in marine environments
Tolli, John D. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2003-09)As colored dissolved organic matter in seawater absorbs UV solar radiation, a variety of simple chemical species are produced, including carbon monoxide (CO). The ocean surface water is saturated with respect to CO, and ... -
A model of the temporal and spatial distribution of carbon monoxide in the mixed layer
Kettle, A. James (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1994-06)A field experiment demonstrated the presence of a diurnal cycle in the concentration of carbon monoxide ([CO]) in the upper ocean at the BATS site. A series of laboratory experiments and numerical simulations were carried ... -
Evidence for significant photochemical production of carbon monoxide by particles in coastal and oligotrophic marine waters
Xie, Huixiang; Zafiriou, Oliver C. (American Geophysical Union, 2009-12-09)Carbon monoxide (CO) photoproduction from particulate and chromophoric dissolved organic matter (CDOM) was determined in seawater from open-ocean and coastal areas. In confirmatory tests, poisoned or non-poisoned filtered ...