• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Geology and Geophysics (G&G)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Geology and Geophysics (G&G)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Application of an inverse method to interpret 231Pa/230Th observations from marine sediments

    Thumbnail
    View/Open
    Article (935.3Kb)
    Figure S1: Diagnostics of the modern circulation inversion (with prior LNM = 3000 m). (236.2Kb)
    Figure S2: Posterior uncertainties for the horizontal circulation between 2000 and 3000 m (solution with prior LNM = 3000). (411.1Kb)
    Figure S3: Posterior uncertainties for the horizontal circulation between 4000 and 5000 m (solution with prior LNM = 3000). (400.9Kb)
    Figure S4: Partition coefficient at 12 stations in the Atlantic Ocean computed from paired measurements of particulate and total 231Pa activity and the geographic locations of stations with paired measurements of particulate and total 231Pa activity and measurements of particulate 230Th activity. (479.4Kb)
    Figure S5: A plot of measured [Pa] against the objectively mapped [Pa] at the same data locations. (97.58Kb)
    Figure S6: Analysis of reconstructed 231Pa from Holocene, LGM, and H1 sediments using an extended data set that includes the 231Pa/230Th record from Negre et al. [2010]. (115.2Kb)
    Additional file information (4.098Kb)
    Text S1: Text S1 contains two appendices: Appendix 1 contains additional information on finite difference forms, and Appendix 2 contains additional references. (234Kb)
    Date
    2011-03-16
    Author
    Burke, Andrea  Concept link
    Marchal, Olivier  Concept link
    Bradtmiller, Louisa I.  Concept link
    McManus, Jerry F.  Concept link
    Francois, Roger  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/4431
    As published
    https://doi.org/10.1029/2010PA002022
    DOI
    10.1029/2010PA002022
    Keyword
     Pa-231/Th-230; Meridional overturning circulation; Inverse method; Heinrich Event 
    Abstract
    Records of 231Pa/230Th from Atlantic sediments have been interpreted to reflect changes in ocean circulation during the geologic past. Such interpretations should be tested with due regard to the limited spatial coverage of 231Pa/230Th data and the uncertainties in our current understanding of the behavior of both nuclides in the ocean. Here an inverse method is used to evaluate the information contained in 231Pa/230Th compilations for the Holocene, Last Glacial Maximum (LGM), and Heinrich Event 1 (H1). An estimate of the abyssal circulation in the modern Atlantic Ocean is obtained by combining hydrographic observations and dynamical constraints. Then sediment 231Pa/230Th data for each time interval are combined with an advection-scavenging model in order to determine their (in)consistency with the modern circulation estimate. We find that the majority of sediment 231Pa/230Th data for the Holocene, LGM, or H1 can be brought into consistency with the modern circulation if plausible assumptions are made about the large-scale distribution of 231Pa and about model uncertainties. Moreover, the adjustments in the data needed to reach compatibility with a hypothetical state of no flow (no advection) are positively biased for each time interval, suggesting that the 231Pa/230Th data (including that for H1) are more consistent with a persistence of some circulation than with no circulation. Our study does not imply that earlier claims of a circulation change during the LGM or H1 are inaccurate, but that these claims cannot be given a rigorous basis given the current uncertainties involved in the analysis of the 231Pa/230Th data.
    Description
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 26 (2011): PA1212, doi:10.1029/2010PA002022.
    Collections
    • Geology and Geophysics (G&G)
    Suggested Citation
    Paleoceanography 26 (2011): PA1212
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      An experimental benchmark for geoacoustic inversion methods 

      Bonnel, Julien; Pecknold, Sean; Hines, Paul C.; Chapman, Ross (Institute of Electrical and Electronics Engineers, 2020-01-17)
      Over the past 25 years, there has been significant research activity in development and application of methods for inverting acoustical field data to estimate parameters of geoacoustic models of the ocean bottom. Although ...
    • Thumbnail

      Investigating microearthquake finite source attributes with IRIS Community Wavefield Demonstration Experiment in Oklahoma 

      Fan, Wenyuan; McGuire, Jeffrey J. (Oxford University Press, 2018-05-21)
      An earthquake rupture process can be kinematically described by rupture velocity, duration and spatial extent. These key kinematic source parameters provide important constraints on earthquake physics and rupture dynamics. ...
    • Thumbnail

      Recent wind-driven variability in Atlantic water mass distribution and meridional overturning circulation 

      Evans, Dafydd Gwyn; Toole, John M.; Forget, Gael; Zika, Jan D.; Naveira Garabato, Alberto C.; Nurser, A. J. George; Yu, Lisan (American Meteorological Society, 2017-03-17)
      Interannual variability in the volumetric water mass distribution within the North Atlantic Subtropical Gyre is described in relation to variability in the Atlantic meridional overturning circulation. The relative roles ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo