Environmental and biological controls on Mg and Li in deep-sea scleractinian corals
Date
2010-09-06Author
Case, David H.
Concept link
Robinson, Laura F.
Concept link
Auro, Maureen E.
Concept link
Gagnon, Alexander C.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/4379As published
https://doi.org/10.1016/j.epsl.2010.09.029Keyword
Biomineralization; Paleoceanography; Deep-sea coral; Mg/Ca; Mg/Li; ThermometryAbstract
Deep-sea scleractinian corals precipitate aragonite skeletons that provide valuable
archives of past ocean conditions. During calcification biological mediation causes variability in
trace metal incorporation and isotopic ratios of the aragonite such that signals caused by
environmental controls can be overwhelmed. This complicates the interpretation of geochemical
proxies used for paleo-reconstructions. In this study we examine the environmental controls on
the Mg/Li ratio of 34 individuals from seven genera of deep-sea scleractinian corals:
Desmophyllum, Balanophyllia, Caryophyllia, Enallopsammia, Flabellum, Trochocyanthus, and
Lophelia. In addition we examine the distributions of Mg and Li in Desmophyllum and
Balanophyllia using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).
Both Mg/Ca and Li/Ca ratios increased by more than a factor of 2 in the center of
calcification regions compared to the outer, fibrous regions of the coral skeleton. As a result,
replicate ~10 mg subsamples of coral show less variability in the Mg/Li ratio than Mg/Ca.
Microscale Mg and Li results are consistent with Rayleigh-type incorporation of trace metals
with additional processes dominating composition within centers of calcification. Comparison of
Mg/Li to seawater properties near the site of collection shows that the ratio is not controlled by
either carbonate ion or salinity. It appears that temperature is the major control on the Mg/Li
ratio. For all 34 samples the temperature correlation (R2=0.62) is significantly better than for
Mg/Ca (R2=0.06). For corals of the family Caryophyllidae the R2 value increases to 0.82 with
the exclusion of one sample that was observed to have an altered, chalky texture. Despite this
excellent correlation the scatter in the data suggests that the Mg/Li ratio of deep-sea corals
cannot be used to reconstruct temperature to better than approximately ±1.6°C without better
temperature control and additional calibration points on modern coral samples.
Description
Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 300 (2010): 215-225, doi:10.1016/j.epsl.2010.09.029.
Collections
Suggested Citation
Preprint: Case, David H., Robinson, Laura F., Auro, Maureen E., Gagnon, Alexander C., "Environmental and biological controls on Mg and Li in deep-sea scleractinian corals", 2010-09-06, https://doi.org/10.1016/j.epsl.2010.09.029, https://hdl.handle.net/1912/4379Related items
Showing items related by title, author, creator and subject.
-
Deep-sea scleractinian coral age and depth distributions in the northwest Atlantic for the last 225,000 years
Robinson, Laura F.; Adkins, Jess F.; Scheirer, Daniel S.; Fernandez, Diego P.; Gagnon, Alexander C.; Waller, Rhian G. (University of Miami - Rosenstiel School of Marine and Atmospheric Science, 2007-11-01)Deep-sea corals have grown for over 200,000 yrs on the New England Seamounts in the northwest Atlantic, and this paper describes their distribution both with respect to depth and time. Many thousands of fossil scleractinian ... -
The mineralogy and chemistry of modern shallow-water and deep-sea corals
Farfan, Gabriela A. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2019-02)The architecture of coral reef ecosystems is composed of coral skeletons built from the mineral aragonite (CaCO3). Coral reefs are currently being threatened by ocean acidification (OA), which may lower calcification rates, ... -
First biological measurements of deep-sea corals from the Red Sea
Roder, C.; Berumen, Michael L.; Bouwmeester, J.; Papathanassiou, E.; Al-Suwailem, A.; Voolstra, Christian R. (Nature Publishing Group, 2013-10-03)It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with ‘deep-sea’ and ‘cold-water’ corals often used as synonymous. Here we report on the first measurements of biological ...