• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Marine Chemistry and Geochemistry (MC&G)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Marine Chemistry and Geochemistry (MC&G)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Environmental and biological controls on Mg and Li in deep-sea scleractinian corals

    Thumbnail
    View/Open
    Case_Manuscript_Revision_inc-table&figures.pdf (913.6Kb)
    Date
    2010-09-06
    Author
    Case, David H.  Concept link
    Robinson, Laura F.  Concept link
    Auro, Maureen E.  Concept link
    Gagnon, Alexander C.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/4379
    As published
    https://doi.org/10.1016/j.epsl.2010.09.029
    Keyword
     Biomineralization; Paleoceanography; Deep-sea coral; Mg/Ca; Mg/Li; Thermometry 
    Abstract
    Deep-sea scleractinian corals precipitate aragonite skeletons that provide valuable archives of past ocean conditions. During calcification biological mediation causes variability in trace metal incorporation and isotopic ratios of the aragonite such that signals caused by environmental controls can be overwhelmed. This complicates the interpretation of geochemical proxies used for paleo-reconstructions. In this study we examine the environmental controls on the Mg/Li ratio of 34 individuals from seven genera of deep-sea scleractinian corals: Desmophyllum, Balanophyllia, Caryophyllia, Enallopsammia, Flabellum, Trochocyanthus, and Lophelia. In addition we examine the distributions of Mg and Li in Desmophyllum and Balanophyllia using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Both Mg/Ca and Li/Ca ratios increased by more than a factor of 2 in the center of calcification regions compared to the outer, fibrous regions of the coral skeleton. As a result, replicate ~10 mg subsamples of coral show less variability in the Mg/Li ratio than Mg/Ca. Microscale Mg and Li results are consistent with Rayleigh-type incorporation of trace metals with additional processes dominating composition within centers of calcification. Comparison of Mg/Li to seawater properties near the site of collection shows that the ratio is not controlled by either carbonate ion or salinity. It appears that temperature is the major control on the Mg/Li ratio. For all 34 samples the temperature correlation (R2=0.62) is significantly better than for Mg/Ca (R2=0.06). For corals of the family Caryophyllidae the R2 value increases to 0.82 with the exclusion of one sample that was observed to have an altered, chalky texture. Despite this excellent correlation the scatter in the data suggests that the Mg/Li ratio of deep-sea corals cannot be used to reconstruct temperature to better than approximately ±1.6°C without better temperature control and additional calibration points on modern coral samples.
    Description
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 300 (2010): 215-225, doi:10.1016/j.epsl.2010.09.029.
    Collections
    • Marine Chemistry and Geochemistry (MC&G)
    Suggested Citation
    Preprint: Case, David H., Robinson, Laura F., Auro, Maureen E., Gagnon, Alexander C., "Environmental and biological controls on Mg and Li in deep-sea scleractinian corals", 2010-09-06, https://doi.org/10.1016/j.epsl.2010.09.029, https://hdl.handle.net/1912/4379
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Deep-sea scleractinian coral age and depth distributions in the northwest Atlantic for the last 225,000 years 

      Robinson, Laura F.; Adkins, Jess F.; Scheirer, Daniel S.; Fernandez, Diego P.; Gagnon, Alexander C.; Waller, Rhian G. (University of Miami - Rosenstiel School of Marine and Atmospheric Science, 2007-11-01)
      Deep-sea corals have grown for over 200,000 yrs on the New England Seamounts in the northwest Atlantic, and this paper describes their distribution both with respect to depth and time. Many thousands of fossil scleractinian ...
    • Thumbnail

      The mineralogy and chemistry of modern shallow-water and deep-sea corals 

      Farfan, Gabriela A. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2019-02)
      The architecture of coral reef ecosystems is composed of coral skeletons built from the mineral aragonite (CaCO3). Coral reefs are currently being threatened by ocean acidification (OA), which may lower calcification rates, ...
    • Thumbnail

      First biological measurements of deep-sea corals from the Red Sea 

      Roder, C.; Berumen, Michael L.; Bouwmeester, J.; Papathanassiou, E.; Al-Suwailem, A.; Voolstra, Christian R. (Nature Publishing Group, 2013-10-03)
      It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with ‘deep-sea’ and ‘cold-water’ corals often used as synonymous. Here we report on the first measurements of biological ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo